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1. Motivation 

The phrase ‘nature knows best’ most definitely applies to walking. After 
decades of intensive research, it is still a mystery how human walking is 
resilient to large perturbations, while maintaining efficiency. Researchers 
have been able to model and design bipedal walkers that are robust or 
efficient, but none that reconcile robustness and efficiency up to the level of 
human walking. The paradox that human walking is at the same time 
efficient and robust has kept researchers busy for years and probably will so 
for years to come. The first motivation for the research described in this 
thesis is to aquire fundamental insight in some of the principles that account 
for the reconciliation of efficiency and robustness in human walking, and by 
that making a step towards solving the paradox. 
 
The second motivation for conducting this research is gaining knowledge 
about balance control in standing and walking to improve rehabilitation aids 
in the future. The Biomechanical Engineering group of the University of 
Twente has years of experience in making successful designs of passive 
orthoses and lower-limb prostheses. However, there is a limit to what can be 
achieved passively. Excess strain on the body makes walking a strenuous 
task for users of orthoses and lower-limb prostheses: they get tired much 
faster compared to people with a normal gait pattern. There is also the 
esthetic aspect. Most commercially available walking aids are passive and 
result in a very stiff gait, which does not look natural. There is need for 
improvement! Active prostheses and orthoses could take walking aids to the 
next level. At present, there are – as far as we know – no active orthosis and 
only a few fully active lower-limb prostheses on the market. Most of the latter 
are active dampers, including the successful C-Leg of Otto Bock. Recently, 
the first active knee joint prosthesis has been introduced that actually 
delivers additional power to the user: the POWER KNEE from Össur. This kind 
of application needs to take over (part of) the balance control with minimal 
energy consumption. Therefore, fundamental knowledge of efficient and 
robust gait control is indispensable to achieve progress in this field. The 
obtained knowledge could also be beneficial in research regarding gait 
rehabilitation robots, such as the one currently developed in our group, 
termed LOPES. 
 
Another motivation is the field of bipedal gait robots. Although not the 
spearhead of the research presented in this thesis, collaboration with the 
BioMechanical Engineering group of the Delft University of Technology did 
raise the question if the gained knowledge of efficient and robust gait control 
could be applied to bipedal gait robots. 
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2. Towards efficient and robust control of 

bipedal walking 

2.1 Introduction 

There is a fundamental difference between standing and walking: standing is 
a posture, while walking is a rhythmic task. However, to get towards an 
understanding of efficient and robust control of human walking, control of 
posture has to be studied first, because control mechanisms such as reflexes 
are used in both posture and rhythmic tasks. For example, studies of human 
arm swinging (Abe and Yamada 2003; Hatsopoulos and Warren Jr 1996) – a 
rhythmic task – have suggested that the frequency of arm swinging is 
controlled by modulation of the reflex gains. If these reflex gains are so high 
that they would give postural instability, it is unlikely that these gains can be 
used to obtain stable controllable arm swinging. Therefore, knowledge of how 
limb dynamics are shaped by reflexes in posture could also prove usefull with 
regard to control of rhythmic movements, including walking. 
 
Mathematically speaking, posture is associated with an equilibrium, while 
rhythmic tasks are associated with a limit cycle. In the chapters of this thesis 
the concepts equilibrium and limit cycle and the analysis of their stability are 
largely assumed known. Therefore, instead of giving an extensive literature 
review, this section will discuss some basics of spinal control (i.e. low-level 
control by structures seated in the spinal cord) of posture (Sect. 2.2) and 
rhythmic movement (Sect. 2.3) and the analysis of their stability. References 
to more detailed information on posture and rhythmic movement can be 
found in the designated chapters. 
 
To introduce the concept of stability, a general description is displayed in Fig. 
1. It depicts two balls on a mountain. The left ball is said to be in an unstable 
 

 

 

 
 
Fig. 1 General notion of stability. The left ball on top of the peak represents a 
mathematical solution that is unstable, while the right ball in the valley represents a 
stable one. 
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position, because the smallest perturbation (and these are always present) 
will cause the ball to fall down the mountain peak. The ball on the right is in a 
position that is said to be asymptotically stable, which means that after a 
small perturbation the ball will return in time to its original position. In the 
remainder of this thesis, we will refer to an asymptotically stable solution as 
being ‘stable’, unless mentioned otherwise.  

2.2 Posture 

Spinal control of posture 

Posture is holding your body or in a certain position. Examples are sitting and 
standing. The central nervous system will notice deviations from the posture 
by sensors that detect motion or position, termed proprioceptors, and will tell 
the muscles to generate a restoring force.  
In biomechanics, postural control is often studied by giving people the task to 
hold their body or body parts such as your hand in position while it is being 
perturbed (e.g. de Vlugt et al. 2002; Fitzpatrick et al. 1992; Van der Helm et 
al. 2002). This kind of research has shown that reflexes are the most 
important control mechanisms in maintaining postural stability despite 
perturbations. The most basic reflex is the stretch reflex, which is a 
monosynaptic reflex. Figure 2 shows basically how the stretch reflex works. 
After being perturbed, the flexor muscle lengthens and the stretch receptor 
inside the muscle – termed muscle spindle – translates this muscle stretch 
into an increased discharge rate. This signal is subsequently sent to the 
spinal cord, where it connects to the motoneuron synaptically. The 
motoneuron is now excited and will cause the muscle to increase contraction, 
thereby counteracting the muscle stretch. The central nervous system is able 
to modulate the stretch reflex – and by that the joint stiffness – in three 
ways. The first is by gamma activation. This excites specialized muscle fibers 
around the muscle spindle, which increases the spindle’s sensitivity. The 
second way is by presynaptic inhibition. In this case another pathway reduces 
the amount of neurotransmitter available before the synaptic connection to 
the motoneuron. This causes the motoneuron’s activity to become smaller. 
Presynaptic inhibition is especially important in rhythmic movement. The 
third way is by direct activation of the motoneurons. Reflex modulation is 
necessary for the central nervous system to be able to maintain different 
types of postures (e.g. holding your arm high or low) in different 
environmental circumstances (e.g. with or without added weights) with the 
same basic control system (i.e. the reflexes). 

Analysis of posture 

Posture is associated with the mathematical concept equilibrium. At an 
equilibrium of a continuous time system, the system is at rest. The 
equilibrium – and by that the posture – can be stable or unstable (see Fig. 
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1). To find out what the influence of reflex gains and time delays are on 
postural stability and dynamic response, the eigenvalues λ of the system are 
calculated. Eigenvalues characterize the stability and natural response of 
linear systems. Equation 1 states a general form of linear systems, termed 
state-space description: 
 

A B

C D

= +

= +

x x u

y x u

�
 (1) 

  
In Eq. 1 x is the state vector of the system, y is the output vector and u is 
the input vector (x� means the time derivative of x). The system matrix A 
contains the system dynamics and from it the eigenvalues can be calculated 
by solving Eq. 2 (I is the unity matrix).  
 

( )det 0A λI− =  (2) 

 

spinal cord

lengthened flexor muscle

muscle spindle

motor end plates

sensory neuron

motoneuron

synapse

 
 
Fig. 2 The stretch reflex. Pushing a standing person lengthens his ankle’s dorsal flexor 
muscles. This muscle lengthening is picked up by the muscle spindles, which send a 
signal to the spinal cord. These signals are subsequently passed onto the motor nerves 
and converge on the muscles by the motor end plates. The result is that the flexor 
muscles activate and counteract the lengthening caused by the perturbation. In other 
word, stretch reflexes provide robustness against perturbations. 
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For non-linear systems like the posture model of Ch. 2, the system equations 
can be linearized in the equilibrium (i.e. the system states associated with 
the posture). Near the equilibrium, the eigenvalues of the linearized system 
will still be a valid estimation of the stability and dynamic properties of the 
real non-linear system, but for larger deviations from the equilibrium, the 
eigenvalues cannot predict the system’s behavior anymore. For example, if 
you push the right ball in Fig. 1 hard enough to the right, it will topple over 
the shallow peak and fall down the mountain. Clearly, the eigenvalues 
associated with the stable equilibrium (i.e. the valley) cannot predict this. 
 
To explain how eigenvalues can help us in determining the stability and 
behavior of musculo-skeletal systems, a simple model of human stance is 
shown in Fig. 3. The muscle pair with stretch reflexes, shown in Fig. 2, is 
represented by joint stiffness K and joint damping B of the ankle.  
Furthermore, the inertial properties of the standing person are reduced to a 
point mass m. The equation of motion for this model is as follows: 
 

2
p sinM ml B K mglθ θ θ θ= + + −�� �  (3) 

 
with Mp the perturbation moment, g the gravity constant and l the length 
between the center of the head and the ankle joint. 

 

 

 
 

m

K B

g

+

θ

 
 (a) (b) 

 
Fig. 3 A simple model of human stance. (a) A standing person (b) The dynamical 
model of the standing person. The ankle muscles are represented by a rotational 
stiffness K and damping B, the mass is represented by m and g is the gravity 
constant. The sway is represented by the angle θ. 
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If the standing person is not perturbed too hard, the angle θ will remain 
small and sinθ equals θ. The equation of motion then becomes: 
 

2
p totM ml B Kθ θ θ= + +�� �  (4) 

 
with totK K mgl= −  the total joint stiffness.  

 
Rewriting Eq. 4 into state-space description (Eq. 1) gives (no output 
specified, thus no C and D matrix): 
 

p

tot
22 2

with and

0 1 0
, 1

- -

A Bu u M

A BK B

mlml ml

θ

ω

 
= + = = 

 

   
   = =
   

     

x x x�

 (5) 

 
where ω is the angular velocity (i.e. time derivative of angle θ) 
 
Filling system matrix A into Eq. 2 leads to: 
 

tot
tot 2 2

2 2

1

det + = 0
- - +

2

-λ
KB

λ λ+K B
λ ml ml

ml ml

 
  =  

    

 (6) 

 
Solving Eq. 6 gives the following eigenvalues: 
 

2
tot

2 2 4 22 4

KB B
λ= -

ml m l ml
± −  (7) 

 
Without damping (i.e. B=0) and with positve stiffness (i.e. Ktot>0) the person 
would never stop swinging back and forth after a push, just as in an ideal 

mass-spring system. In this case the eigenvalues are 2
tot /λ= j K ml±  (j2=-

1). Hence, imaginary eigenvalues represent undamped oscillation. In general, 
complex eigenvalues with both real and imaginary parts indicate damped 
oscillatory response. Joint damping will produce a force that resists 
movement and by that dissipates energy. The more joint damping is added, 
the faster the oscillatory movement will die out. In other words, the real 
(negative) part of eigenvalues indicate how fast the system is back at its 
equilibrium after a perturbation. If the total joint stiffness Ktot is smaller than 
zero, i.e. the muscular stiffness K is smaller than the negative gravitational 



INTRODUCTION 
 

9 

stiffness –mgl, at least one eigenvalue has a positive real value (i.e. one or 
both eigenvalues lie in the right-half plane), regardless of the damping value 
B (see Eq. 6). A negative joint stiffness will not produce a restoring force 
after the person is pushed, but a force away from the posture: the person 
falls. In other words, the real parts of all eigenvalues λ have to be negative 
for the system to be stable in its equilibrium. 
 
Systems may show fundamentally different behavior when certain 
parameters are varied. Such a change in behavior is associated with a 
bifurcation, that is, a change in the qualitative structure of the solutions to 
the differential equations that describe the system (Arrowsmith and Place 
1990; Seydel 1994). In this thesis only local bifurcations are studied. Local 
bifurcations are bifurcations that can be completely analysed by only looking 
at the local stability properties of equilibria, limit cycles or other invariant 
sets. Hence, local bifurcations are associated with loss of the local stability of 
invariant sets by parameter change. In case of equilibria, the type of local 
bifurcation that is encountered can be determined by the way the 
eigenvalues of the linearized system cross over to the right-half of the 
complex plane (with non-zero speed). The bifurcation is termed a fold 
bifurcation if the eigenvalue equals zero (Fig. 4a). It is termed a Hopf 
bifurcation in case of a pair of imaginary eigenvalues (Fig 4b). At a fold 
bifurcation two equilibria (or two fixed points in case of discrete time 
systems) collide and annihilate each other: there are two equilibria more on 
one side of the fold bifurcation compared to the other side. In symmetrical 
systems the fold bifurcation will present itself as a pitchfork bifurcation. If an 
equilibrium becomes unstable by Hopf bifurcation, a limit cycle will emerge. 
Limit cycles and their analysis will be discussed in the next section. In this 
thesis, both the pitchfork and the Hopf bifurcation are encountered for 
postural equilibria and the associated implications are discussed in the 
designated chapters (mainly Ch. 2). Somewhat more exotic bifurcation – i.e. 
 

 
 

 
 (a) (b) 

 
Fig. 4 The eigenvalues (marked with ‘x’) in the complex plane belonging to (a) a fold 
bifurcation and (b) a Hopf bifurcation. 
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the Bognadov-Takens bifurcation and the fold-Hopf bifurcation – are also 
encountered (Ch. 2), but it is outside the scope of this thesis to discuss all 
the possible behaviors beyond these types of bifurcation. More information on 
these types of bifurcations can be found in Kuznetsov (1998).  

2.3 Rhythmic movement 

Spinal control of rhythmic movement 

Rhythmic movements are commonplace in nature. Examples are scratching, 
chewing, walking, running, swimming and flying. A lot of those rhythmic 
movements are controlled by neural networks in the spinal cord, termed 
central pattern generators (CPGs). CPGs excite the muscles periodically to 
provide the basic motor pattern to perform the rhythmic task at hand. In 
most rhythmic movements the CPGs alternately excite the flexor and 
extensor muscles – i.e. the muscles that respectively flex and extend the 
joint around which they are wrapped – and by that induce rhythmic 
movement. A well-known CPG model is the half-center model (Brown 1914). 
Figure 5 shows a half-center model, which is derived from the models of 
Matsuoka (1985; 1987). 
 
The assumption that CPGs are important in human gait is for the most part 
based on abundant evidence of CPGs in the animal world (reviews in Duysens 
and Van de Crommert 1998; MacKay-Lyons 2002). For example, cats that 
have their afferent and efferent pathways to the brain transected (i.e. the 
brain does not receive sensory information from the body, nor is it able to 
send information back) are still able to walk when they are put on a treadmill 
(see Van de Crommert et al. (1998) for a lot of references to treadmill 
walking in spinal cats). When the speed of the treadmill is increased, the 
CPGs adapt their motor pattern to match this speed. This adaptive behavior 
originates from reflexive input from the paws (pressure information) and the 
muscles (length and velocity information). The increase in treadmill velocity 
increases the rate at which the sensory information changes and the CPGs 
adapt their output pattern to this new input pattern in such a way that a 
faster gait is obtained. It is noted that the sense of balance of the transected 
cats is much weaker that that of normal cats, since these cats lack 
integration of sensory information by the cerebellum, motor control by the 
motor cortex and sensory information of their orientation and movement in 
space by the vestibular system. However, the fact that they are still able to 
walk and adapt their gait pattern to the environment despite these deficits 
shows the key role CPGs and reflexes play in walking. Other clear examples 
of the existence of CPGs are provided by studies on isolated spinal cords of 
rats(Cazalets et al. 1995; Clarac et al. 2004; Juvin et al. 2007; Marchetti et 
al. 2001). Chemical stimulation (bath-applied neurotransmitters), electrical 
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stimulation of the dorsal roots (i.e. spinal nerves that contain sensory 
information) and electrical stimulation of the brainstem evoke alternating 
rhythmic patterns in the ventral roots that are normally connected to the 
flexor and extensor muscles. This is termed fictive locomotion. 
Although there is no direct evidence of the existence of CPGs in the human 
spine, there are indications and indirect evidence of their presence. Newborn 
babies make coordinated stepping movements when their feet touch the 
ground (Borvendeg and de Groot 2000; Davis et al. 1994; Forssberg 1985; 
Yang et al. 1998). This stepping behavior is thought to be controlled by spinal 
structures, because anencephalic babies – having a brain stem but no 
cerebellum or cerebrum – still display this stepping behavior (Peiper 1961). 
In normal babies this ‘spinal stepping’ disappears when they develop, 
probably because the importance of supraspinal control of locomotion is 
larger in adult humans than in animals (i.e. cortical dominance). Nonetheless, 
these observations strongly advocate the existence of spinal control 
structures used in human walking. Further indications are provided by studies 

u0

sF

sE

yF

yE

excitatory
inhibitory

F

E

C
P

G
 o

u
tp

u
ts

yE

yF

 
 (a) (b) 

 
Fig. 5 (a) The half-center model is a well-known CPG model. Two groups of neurons 
termed the flexor center (denoted ‘F’) and extensor center (denoted ‘E’) provide motor 
patterns for the flexor and extensor muscles, respectively. Both receive constant 
excitatory supra-spinal input u0. However, as both centers inhibit each other, only one 
of the centers can be firing at the same time. A center can only fire for some time, 
because it possesses adaptation dynamics (shown by dashed lines). Subsequently, the 
other center will start firing, as it is no longer inhibited. Hence, the CPG exhibits an 
oscillation, even without reflexive input (i.e. intrinsic oscillation). However, if reflexive 
input (sF and sE) is present, the CPG will entrain to it by altering its output pattern.  
(b) Typical output pattern of the CPG (yF and yE are the firing rates), which leads to 
alternating flexion and extension of a limb. 
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showing that tonic electrical stimulation of the lumbar spinal cord induces 
locomotion stepping in paraplegic patients (Dimitrijevic et al. 1998; Shapkov 
and Shapkova 1999; Shapkov et al. 1996; Wickelgren 1998). Finally, studies 
on reflex modulation during rhythmic arm (Zehr et al. 2004; Zehr and Chua 
2000; Zehr et al. 2003; Zehr and Kido 2001) and leg movements (for 
reviews see Brooke et al. 1997; Zehr and Stein 1999) suggest the presence 
of CPGs in the human spine, since the observed subcortical neural control is 
similar to that in animals for which CPGs are already discovered. 
 

Analysis of rhythmic movement 

Rhythmic movement is associated with the mathematical concept limit cycle. 
A limit cycle is a closed orbit in state space. Limit cycles can only exist for 
non-linear systems. Figure 6 shows how replacing a viscous damper with a 
non-linear damper changes the equilibrium of the mass-spring-damper 
system into a limit cycle. The limit cycle is called stable if a small 
perturbation leads to an orbit that approaches the limit cycle (see Fig 6b). It 
is unstable if arbitrary small perturbations lead to orbits leaving the 
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Fig. 6 Phase potraits of the mass-spring-damper system with (a) a viscous damper 
(b) a non-linear damper. The non-linear damper causes presence of a stable limit 
cycle, because it dissipates energy when x>|1|, but it supplies energy when x< |1|. 
Loss and supply of energy are always necessary components for the existence of stable 
limit cycles. 
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neighborhood of the limit cycle. A stable limit cycle implies self sustained 
oscillations. For example, the gait cycle in walking is represented by a stable 
limit cycle (Holt et al. 1990). If the walker is not pushed or tripped too hard, 
he will be able to maintain balance. Some time after the perturbation he will 
walk again with the same velocity, periodic muscle activations and joint 
angles etcetera. In other words, the walker will return to its original gait 
cycle, that is, to its limit cycle. 
 
Besides the system’s non-linearity, there are two necessary conditions for 
stable limit cycles to exist in physical systems. The first is the presence of 
energy buffers that enable the existence of oscillations by exchanging energy 
from one buffer to another. The second is the presence of loss and supply of 
energy. The latter generally requires a control mechanism that regulates the 
supply (and possibly part of the loss) of energy. For example, in walking the 
masses act as kinetic and potential energy buffers that will exchange energy 
during walking. The main part of the energy loss during walking comes from 
the impact at heel strike. The central nervous system controls the muscles in 
such a way that this loss of energy is compensated so that sustained walking 
is obtained. 
 
Equation 8 states a general form of autonomous non-linear systems 
consisting of ordinary differential equations, in which x is the state vector of 
the system, F(x) is the set of non-linear equations in x and and c is a vector 
consisting of constants. 
 

( )= +x F x c�  (8) 

 
Assume this system possesses a limit cycle. To determine if the limit cycle is 
stable, a (hyper)surface Ω is placed transverse to the limit cycle (see Fig. 7). 
This surface is termed a Poincaré section. The crossings of the orbit with this 
surface in a given direction can be seen as a discrete representation of the 
flow near the limit cycle. The mapping from surface to surface is called the 
Poincaré map P(x) (see Eq. 9a) and has a state space whose dimension is 
reduced by one relative to the original continuous time system. The limit 
cycle is represented by the fixed point x�  of the Poincaré map (see Eq. 9b 
and Fig. 7). A fixed point is a rest point of a discrete time system, analogous 
to an equilibrium in continuous time systems. Thus, the limit cycle in state 
space is represented by fixed point x�  in reduced state space. 
 

( )Px x�  (9a) 

( )P =x x� �  (9b) 

 
The limit cycle will be locally stable if the fixed point of the Poincaré map is 
locally stable. This is determined by calculating the eigenvalues of the 
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Poincaré map, which are termed Floquet multipliers. The Floquet multipliers λ 
can be calculated by solving Eq. 10, in which J is the jacobian of the Poincaré 
map and I is the unity matrix. 
 

( )det 0J λI− =  (10a) 

1 1

1 n-1

n-1 n-1

1 n-1
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P P

x x
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P P

x x
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 = =
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 ∂ ∂ 

x

x

�

� � �

�
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 (10b) 

 
The Floquet multipliers can be seen as growth factors of small deviations 
from the limit cycle. The system will return to the limit cycle if the largest 
absolute value of the Floquet multipliers is smaller than 1 (i.e. all multipliers 
lie within the unit circle), because the deviation from the limit cycle becomes 
smaller every time the orbit hits the surface Ω: the limit cycle is locally 
asymptotically stable. If the largest multiplier (in absolute value) is larger 
than 1, deviations from the limit cycle will grow and thus the limit cycle is 
unstable.  
 
The event that a parameter change causes the limit cycle to change stability 
is termed a local bifurcation (see Sect. 2.2). The type of local bifurcation is 

Ω
X̃

X

P( )X

limit cycle
 

 
Fig. 7 The Poincaré map displays a stroboscopic view of the system’s dynamics. It 
maps from surface to surface (from x to P(x)). The surface is placed tranverse to the 
limit cycle and is termed a Poincaré section. The limit cycle is represented by the point 

x� on the Poincaré section. 
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determined by the way the multipliers cross the unit circle (with non-zero 
speed), as shown in Fig. 8. The types of bifurcation encountered in the 
research of the current thesis are the pitchfork and the period doubling 
bifurcation. The pitchfork bifurcation is a type of fold bifurcation (see Sect. 
2.2). Beyond a period doubling bifurcation the system exhibits behavior with 
twice the period of before the bifurcation. An example of multiple period 
doubling bifurcations undergone by a simple gait model is shown in Fig. 9. 
Figure 9a shows the normal gait cycle, while Fig. 9b shows the altered gait 
due to multiple period doubling bifurcations. A well-known route to chaos 
(Feigenbaum 1978) consists of subsequent period doubling bifurcations, 
finally leading to behavior without any periodicity, that is, chaos. This route is 
exhibited by the passive dynamic walker in Ch. 5.  

 
The Floquet multipliers are often determined by the perturbation method. The 
following example illuminates the concept limit cycle and shows how the 
perturbation method works in a simple model of a boy jumping on a 
trampoline (see Fig. 10a). Jumping the trampoline is associated with a stable 
limit cycle. Potential energy (i.e. heigth) is transformed into kinetic energy 
while falling down towards the trampoline. After the trampoline is hit, part of 
the kinetic energy will be lost by damping and part will be buffered by the 
spring action of the trampoline. The energy loss is compensated by the boy 
who – while on the trampoline – uses his muscles to supply the necessary 
force. A higher force Fm will lead to a limit cycle with greater jumping height. 
When the boy leaves the trampoline to go up, kinetic energy is transformed 
back into potential energy and the cycle is complete. The equation of motion 
of this model is stated in Eq. 11, where y is the boy’s height, m is the boy’s 
mass, g is the gravity constant, B(y) is a non-linear damping and K(y) is a 
non-linear stiffness. Perturbations are represented by the force Fp.  

 
 

 

j

-j

1-1

j

-j

1-1

 
 (a) (b) 

 
Fig. 8 The Floquet multipliers (marked with ‘x’) in the complex plane belonging to (a)
a pitchfork bifurcation and (b) a period doubling bifurcation. 
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Fig. 9 Multiple period doubling bifurcations in a simple gait model (a) Phase plane of 
right limb angle θ versus angular velocity ω of the normal gait cycle, that is, before the 
series of period doubling bifurcations. HS means heel strike and TO means toe off. The  
small figures next to the phase plane plot show the configuration of the walker’s legs at 
several points in the gait cycle (solid line is right leg, dashed line is left leg) (b) The 
phase plane after multiple period doubling bifurcations (c) The time series of the angle 
θ of the right leg after multiple period doubling bifurcations 



INTRODUCTION 
 

17 

 
 
 

y

Vy

y

Vy
perturbation

Ω

ỹ
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Fig. 10 Boy jumping a trampoline is a limit cycle (a) Phase portrait of heigth y versus 
velocity vy of the jumping (b) Perturbation leads to a deviation of the boy’s trajectory 
relative to the limit cycle. The crossing from positive velocity to a negative velocity 
(vy=0) is chosen as the Poincaré section Ω. The boy returns back to the limit cycle in 
time and the subsequent crossings with Ω are shown (yn-1, yn and yn+1). The limit cycle 
itself is represented by the point y� on Ω. 
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m p ( ) ( )F mg F my B y y K y y− + = + +�� �  (11) 

 
The model has two states, namely y and the velocity vy (vy is the time 
derivative of y, i.e. y� ). The stiffness K(y) is dependent on the height y, 

because the boy only experiences spring action when on the trampoline and 
not in mid air. The damping B(y) is dependend on the height y, because the 
damping on the trampoline is far greater than that provided by air resistence. 
These non-linearities in the stiffness and damping together with the 
intermittent control of the boy’s muscles – compensating the damper’s 
energy loss – and the exchange of energy between height, spring and kinetic 
energy buffers fulfill the necessary conditions for the existence of a limit 
cycle. Figure 10a shows the phase portrait – plotting both states against each 
other – of the limit cycle associated with the trampoline jumping. Figure 10b 
shows that a deviation from the limit cycle will occur if the boy is perturbed. 
The boy will return to its limit cycle and in this simple one-dimensional case 
the Floquet multipliers can be determined from this recovery (in general, 
however, all the state variables of a system have to be perturbed to fill the 
jacobian J (Eq. 10b) before the multipliers λ can be calculated (Eq. 10a)). 
The phase portrait shows how the boy returns to its original jump height, i.e. 
its limit cycle. To be able to calculate the multipliers the dynamics are 
discretized by taking a surface tranverse to the limit cycle. As the original 
state-space of this model is two-dimensional, the Poincaré section is in fact a 
line. If the boy’s trajectory is in the vicinity of the limit cycle, data from its 
crossings with this line can be used to calculate the jacobian J (Eq. 10b). This 
data is shown in Fig. 10b and gives the following jacobian: 
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y yP P
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y y y y
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∂ ∆ −
�

�

�
 (12) 

 
with n representing the number of the cycle. 
 
Filling the jacobian J into Eq. 10a gives the Floquet multipliers. Since the 
reduced state-space of the system on the Poincaré section is one-
dimensional, there is only one Floquet multiplier, which therefore equals the 
jacobian: 
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From Eq. 13 it is easily seen that the Floquet multiplier represents the grow 
factor of deviations from the limit cycle: 
 

n+1 n

k
n+k n

y = λ y

y = λ y

∆ ∆

⇔ ∆ ∆
 (14) 

 
Hence, the multiplier’s absolute value has to be smaller than one, because 
else the deviation from the limit cycle would grow: the limit cycle would be 
unstable. Equation 14 also shows that for stable limit cycles a smaller 
multiplier λ means a faster recovery from small perturbations. It is noted that 
Floquet multipliers – like the eigenvalues of an equilibrium – represent the 
behavior of the linearised system. Thus, the multipliers are only valid 
representations of the limit cycle’s stability and the grow factors of deviations 
in the vicinity of the limit cycle. Large perturbations can lead to trajectories 
away from the limit cycle and towards another invariant set (e.g. a stable 
equilibrium), despite the fact that the limit cycle is locally stable.  
 
Stable limit cycles and equilibria are examples of attractors. The global 
stability of attractors is shown by their basin of attraction. This is the part of 
state-space from which the system will converge to the attractor. Thus, in 
principle, the global stability of stance and gait could be determined by 
obtaining the basin of attraction. Unfortunaly, neuro-musculo-skeletal models 
of stance and gait tend to be high dimensional systems. This makes it 
virtually impossible to calculate the basin of attraction numerically, let alone 
find an analytical expression for it.  
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3. Goal and approach 

The goal of the research presented in this thesis is to find the principles of 
neural control that make human walking both efficient and robust. Modeling 
is used to achieve this goal, because – in contrast to experimental research – 
one can isolate the interesting parts of the system from the rest, leaving a 
model that contains the essential dynamics of the system under 
investigation. With such a model, the influence of important neural 
parameters on the quality of walking – such as dynamic gait stability – can 
be assessed. Modeling is necessary, because there are a number of problems 
with experimental gait research that make it very hard – if not impossible – 
to get a reliable estimation of the dynamic properties of walking. Firstly, it is 
difficult to separate the contributions of different parts of the system to the 
dynamics of walking. Secondly, repeatability is never perfect. It is therefore 
common practice to average between different gait cycles to obtain the 
‘normal’ gait cycle. By averaging, however, the variations between 
subsequent gait cycles are thrown away, while these could contain valuable 
information about the dynamic properties of walking. Repeatability becomes 
even more of a problem when trying to discover the dynamic response to 
perturbations. Learning effects change the response, so objective 
measurements are hard to make. Thirdly, one cannot measure – or even 
know – all the states of the system. Fourthly, the neural parameters under 
investigation cannot be physically changed to the desired extent or cannot be 
changed at all. In other words, with experimental research alone, it is 
virtually impossible to ascertain the influence of neural parameters on the 
dynamical properties of walking. Modeling – fed with data from experimental 
research – is needed to find the principles behind robust and efficient human 
walking. 
  
Instead of starting with a large control scheme with a huge amount of 
variables and parameters, a bottom-up approach was chosen to fully 
understand each step taken and appreciate the influence of low-level neural 
control, starting off with investigating the influence of reflexes on the quality 
of posture and working towards efficient and robust spinal gait control. With 
the bottom-up approach in mind, the following research questions are 
deduced from the goal: 
 

• What is the influence of different components of reflexive feedback on 
postural stability and associated dynamical behavior? 

 
• Can the co-existence of CPGs and reflexes explain observed efficient and 

robust rhythmic limb movement? 
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• Can both efficiency and robustness be achieved in CPG-controlled 
walking or is there a trade-off between these gait qualities? 

 
The research described in this thesis is qualitative in nature, since the goal is 
not to develop predictive models, but to acquire fundamental knowledge of 
the influence of low-level neural control on posture and rhythmic movement. 
Therefore, minimalistic neuro-musculo-skeletal models of posture, rhythmic 
limb movement and walking are developed, which nonetheless possess 
enough of the the essential dynamics to evaluate the influence of important 
neural parameters on the quality of their behavior.  
 
Changes in the behavior of dynamical systems correspond to changes in the 
qualitative structure of their solutions, which are termed bifurcations. 
Bifurcation analysis and continuation methods are therefore valuable 
mathematical tools for determining the influence of parameters on the 
qualitative behavior of the system under investigation. They are used in this 
thesis to evaluate the stability margins regarding neural parameters and to 
discriminate different biomechanical behaviors. Examples of the latter are 
stable posture versus clonus (see Ch. 2, Sect. 3.1) and symmetrical gait 
versus limping (e.g. Ch. 5, Sect. 3.1). 
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4 Thesis outline 

The scientific contribution produced during fulfillment of the PhD assignment 
consists of five articles on the subjects of posture, rhythmic limb movement 
and gait, which make up for the chapters of the present thesis. The research 
questions are addressed in the following chapters: 
 
 

• What is the influence of different components of reflexive feedback on 
postural stability and associated dynamical behavior? 

 
Chapter 2 introduces bifurcation and stability analysis as a way of 
identifying different behaviors of neuro-musculo-skeletal models and 
functions as a framework for later chapters. In this chapter the 
influence of reflexive feedback of muscle lengthening, muscle 
velocity, force and time delay on the behavior and stability in 
musculoskeletal systems is assessed using a model of human stance.  

 
 
• Can the co-existence of CPGs and reflexes explain observed efficient and 

robust rhythmic limb movement? 
 

Chapter 3 presents a CPG model that shows flexible, efficient and 
robust control of rhythmic limb movement and determines the 
necessary and sufficient types of afferent feedback to do so. 
 
Chapter 4 presents a neuro-musculo-skeletal model of the forearm, 
in which the local reflex loop co-exists with the CPG and both receive 
afferent input from the muscles. This model achieves energy efficient 
rhythmic arm movement by resonance tuning, a feature also 
observed in human arm swinging. 

 
 
• Can both efficiency and robustness be achieved in CPG-controlled 

walking or is there a trade-off between these gait qualities? 
 

Chapter 5 presents a comparison of passive-dynamic walking – i.e. 
walking passively down a slope – with CPG-controlled walking. The 
CPG hardly changes the natural limit cycle of the passive walker; it 
only compensates the energy lost at heel strike and draws the walker 
back to the limit cycle when perturbed. This way, robust walking is 
achieved, while retaining the energy efficiency of passive dynamic 
walking. 
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Chapter 6 shows that in a simple CPG-controlled gait model with 
human mass distribution – i.e. unable to walk passively down a slope 
– walking is achieved, which is both efficient and robust against 
perturbations. However, a strict trade-off between these gait qualities 
is present. 

 
 
Finally, Chapter 7 presents discussion, conclusions and future directions. 
 
 
 



CHAPTER 1 

24 

References 

Abe MO, Yamada N (2003) Modulation of elbow joint stiffness in a vertical plane during 
cyclic movement at lower or higher frequencies than natural frequency. Exp 
Brain Res 153:394-9 

Arrowsmith DK, Place CM (1990) An introduction to dynamical systems. In. Cambridge 
University Press, Cambridge, pp 423 

Borvendeg K, de Groot L (2000) The stepping response in early infancy. 
Neuropediatrics 31:180-5 

Brooke JD, Cheng J, Collins DF, McIlroy WE, Misiaszek JE, Staines WR (1997) Sensori-
sensory afferent conditioning with leg movement: gain control in spinal reflex 
and ascending paths. Prog Neurobiol 51:393-421 

Brown TG (1914) On the nature of the fundamental activity of the nervous centres; 
together with an analysis of the conditioning of rhythmic activity in 
progression, and a theory of the evolution of function in the nervous system. J 
Physiol 48:18-46 

Cazalets JR, Borde M, Clarac F (1995) Localization and organization of the central 
pattern generator for hindlimb locomotion in newborn rat. J Neurosci 
15:4943-51 

Clarac F, Pearlstein E, Pflieger JF, Vinay L (2004) The in vitro neonatal rat spinal cord 
preparation: a new insight into mammalian locomotor mechanisms. J Comp 
Physiol A Neuroethol Sens Neural Behav Physiol 190:343-57 

Davis DW, Thelen E, Keck J (1994) Treadmill stepping in infants born prematurely. 
Early Hum Dev 39:211-23 

de Vlugt E, Schouten AC, van der Helm FC (2002) Adaptation of reflexive feedback 
during arm posture to different environments. Biol Cybern 87:10-26 

Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998) Evidence for a spinal central pattern 
generator in humans. Ann N Y Acad Sci 860:360-76. 

Duysens J, Van de Crommert HW (1998) Neural control of locomotion; The central 
pattern generator from cats to humans. Gait Posture 7:131-141. 

Feigenbaum MJ (1978) Quantitative universality for a class of non-linear 
transformations. J. Stat. Phys. 19:25-52 

Fitzpatrick RC, Taylor JL, McCloskey DI (1992) Ankle stiffness of standing humans in 
response to imperceptible perturbation: reflex and task-dependent 
components. J Physiol 454:533-47 

Forssberg H (1985) Ontogeny of human locomotor control. I. Infant stepping, 
supported locomotion and transition to independent locomotion. Exp Brain Res 
57:480-93 

Hatsopoulos NG, Warren Jr WH (1996) Resonance Tuning in Rhythmic Arm Movements. 
J Mot Behav 28:3-14 

Holt KG, Hamill J, Andres RO (1990) The force-driven harmonic oscillator as a model 
for human locomotion. Human Movement Science 9:55 

Juvin L, Simmers J, Morin D (2007) Locomotor rhythmogenesis in the isolated rat 
spinal cord: a phase-coupled set of symmetrical flexion extension oscillators. J 
Physiol 583:115-28 

Kuznetsov YA (1998) Elements of Applied Bifurcation Theory. In: Marsden JE, Sirovich 
L (eds) Applied mathematical sciences. Vol. 112. Springer-Verlag, New York, 
pp 591 

MacKay-Lyons M (2002) Central pattern generation of locomotion: a review of the 
evidence. Phys Ther 82:69-83. 



INTRODUCTION 
 

25 

Marchetti C, Beato M, Nistri A (2001) Alternating rhythmic activity induced by dorsal 
root stimulation in the neonatal rat spinal cord in vitro. J Physiol 530:105-12 

Matsuoka K (1985) Sustained oscillations generated by mutually inhibiting neurons 
with adaptation. Biol Cybern 52:367-76 

Matsuoka K (1987) Mechanisms of frequency and pattern control in the neural rhythm 
generators. Biol Cybern 56:345-53 

Peiper A (1961) Cerebral functions in infancy and childhood. In, Consultants Bureau, 
New York 

Seydel R (1994) Practical bifurcation and stability analysis: from equilibrium to chaos. 
In:  Interdisciplinary Applied Mathematics. Vol. 5. Springer-Verlag, New York, 
pp 407 

Shapkov YT, Shapkova EY (1999) Human spinal locomotor generators: Problems of 
assessment of stimulation efficiency. Biomedical Engineering 32:211 

Shapkov YT, Shapkova EY, Mushkin AY (1996) Spinal electrostimulation as an approach 
to locomotor activity induction in children: Clinical aspects and technological 
problems. Biomedical Engineering 30:177 

Van de Crommert HW, Mulder T, Duysens J (1998) Neural control of locomotion: 
sensory control of the central pattern generator and its relation to treadmill 
training. Gait Posture 7:251-263. 

Van der Helm FC, Schouten AC, de Vlugt E, Brouwn GG (2002) Identification of 
intrinsic and reflexive components of human arm dynamics during postural 
control. J Neurosci Methods 119:1-14. 

Wickelgren I (1998) Teaching the spinal cord to walk. Science 279:319-21 
Yang JF, Stephens MJ, Vishram R (1998) Infant stepping: a method to study the 

sensory control of human walking. J Physiol 507 (Pt 3):927-37 
Zehr EP, Carroll TJ, Chua R, Collins DF, Frigon A, Haridas C, Hundza SR, Thompson AK 

(2004) Possible contributions of CPG activity to the control of rhythmic human 
arm movement. Can J Physiol Pharmacol 82:556-68 

Zehr EP, Chua R (2000) Modulation of human cutaneous reflexes during rhythmic 
cyclical arm movement. Exp Brain Res 135:241-50 

Zehr EP, Collins DF, Frigon A, Hoogenboom N (2003) Neural control of rhythmic human 
arm movement: phase dependence and task modulation of hoffmann reflexes 
in forearm muscles. J Neurophysiol 89:12-21 

Zehr EP, Kido A (2001) Neural control of rhythmic, cyclical human arm movement: 
task dependency, nerve specificity and phase modulation of cutaneous 
reflexes. J Physiol 537:1033-45 

Zehr EP, Stein RB (1999) What functions do reflexes serve during human locomotion? 
Prog Neurobiol 58:185-205. 

 
 





Chapter 2 

Bifurcation and stability analysis in 

musculo-skeletal systems: a study into 

human stance 

 
 
 
 
 
 
 

 

 

 

B.W. VERDAASDONK, H.F.J.M. KOOPMAN, S.A. VAN GILS, F.C.T. VAN DER HELM 

Biological Cybernetics 91: 48-62, 2004 

 



CHAPTER 2 

 

28 

Abstract 

Reflexes are important in the control of such daily activities as standing and 
walking. The goal of this study is to establish how reflexive feedback of 
muscle length, velocity and force can lead to stable equilibria (i.e. posture) 
and limit cycles (e.g. ankle clonus and gait). The influence of stretch reflexes 
on the behavior and stability of musculo-skeletal systems was examined 
using a model of human stance. We computed branches of fold and Hopf 
bifurcations by numerical bifurcation analysis of the model. These fold and 
Hopf branches divide the parameter space, constructed by the reflexive 
feedback gains, into regions of different behavior: unstable posture, stable 
posture and stable limit cycles. These limit cycles correspond to a neural 
deficiency, termed ankle clonus. We also linked bifurcation analysis to known 
biomechanical concepts by linearizing the model: the fold branch corresponds 
to zero ankle stiffness and defines the minimal muscle length feedback 
necessary for stable posture; the Hopf branch is related to unstable reflex 
loops. Crossing the Hopf branch can lead to the above mentioned stable limit 
cycles. The Hopf branch reduces with increasing time delays, making the 
subject's posture more susceptible to unstable reflex loops. This might be one 
of the reasons why elderly people, or those with injuries to the central 
nervous system, often have trouble with standing and other posture tasks. 
The influence of co-contraction and force feedback on the behavior of the 
posture model was also investigated. An increase in co-contraction leads to 
an increase in ankle stiffness (i.e. intrinsic muscle stiffness) and a decrease in 
the effective reflex loop gain. On the one hand, positive force feedback 
increases the ankle stiffness (i.e. intrinsic and reflexive muscle stiffness); on 
the other hand it makes the posture more susceptible to unstable reflex 
loops. For negative force feedback, the opposite is true. Finally, we calculated 
areas of reflex gains for perturbed stance and quiet stance in healthy 
subjects by fitting the model to data from the literature. The overlap of these 
areas of reflex gains could indicate that stretch reflexes are the major control 
mechanisms in both quiet and perturbed stance. In conclusion, this study has 
successfully combined bifurcation analysis with the more common 
biomechanical concepts and tools to determine the influence of reflexes on 
the stability and quality of stance. In the future, we will develop this line of 
research to look at rhythmic tasks, such as walking. 
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1. Introduction 

For healthy people, walking seems an easy task, since for them it is an 
effortless and robust way of locomotion. However, people with an orthosis or 
prosthesis and people with a decreased capacity of the central nervous 
system (e.g. older people, CVA patients) often find walking difficult. They 
need to put more effort in each step, become tired more quickly and are less 
able to deal with perturbations (e.g. a push). To help these groups, the 
principles that make normal walking such a robust and efficient form of 
locomotion must be discovered first. 
 
If people are slightly perturbed by their environment during walking, they 
tend to return to their original periodic movement. This periodic orbit that 
gait approaches each time it is perturbed can be described by a stable limit 
cycle (e.g. Garcia et al. 1998; Hurmuzlu and Basdogan 1994). A limit cycle is 
termed stable if the system under consideration returns towards this cycle 
after small perturbations. The mathematical description of walking as 
approaching a stable limit cycle gives us the opportunity to explore the 
influence of physiological parameters on the qualitative behavior and stability 
of gait. Simplified segment models of humans show unactuated walking down 
a shallow slope (Garcia et al. 1998; McGeer 1989; Schwab and Wisse 2001), 
which McGeer termed passive dynamic walking (McGeer 1990). Such models 
can be seen as damped mechanical non-linear oscillators, maintaining 
oscillation by a small supply of gravitational energy (by means of the slope), 
which compensates for energy losses due to friction and heel strike. It is this 
interaction between energy loss and energy supply that creates the limit 
cycle to which the model returns after small perturbations. The drawback of 
passive dynamic walking is its poor robustness against perturbations. Schwab 
and Wisse (2001) have quantified the robustness by computation of the basin 
of attraction of the simplest walking model of Garcia et al. (1998); they 
showed that the basin was very small. 
 
Humans exploit the natural dynamics of their body during walking. At a 
certain velocity they walk with minimum effort per unit distance traveled 
(Inman et al. 1981; McMahon 1984). It is this velocity people mostly adopt, 
exploiting natural dynamics to the maximum and resembling passive dynamic 
walking most closely. However, unlike the passive dynamic walking models, 
humans can adapt their speed (i.e. change to another limit cycle) and are 
robust against larger perturbations. A major contribution to this adaptability 
and robustness comes from reflexes and probably from central pattern 
generators. The functional role of muscle, load receptor (probably Golgi 
tendon organs) and cutaneous reflexes in gait is discussed in depth by Zehr 
and Stein (1999). They conclude that stretch reflexes are important, among 
other factors, in providing stability against perturbations in the swing phase, 
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and in providing both weight support and stability in the stance phase. Load 
receptor reflexes could be important in the stance and stance-to-swing phase 
and affect the period of the limit cycle, although it is unclear to what extent. 
To fulfill their functional role during gait, reflexes are modulated (i.e. phase 
dependent), but the mechanisms that cause this modulation are not yet 
known precisely. A central pattern generator (CPG) could play an important 
part in the phase modulation of reflexes during walking. A CPG is a neural 
oscillator that entrains to the 'mechanical oscillator' (i.e. segment model), 
thus providing an activation pattern that in turn leads to stable locomotion. 
Evidence for the existence of CPGs was found, for example, in lampreys 
(Cohen and Wallen 1980; Grillner et al. 1981) and cats (Amemiya and 
Yamaguchi 1984; Brown 1911; Shik et al. 1966). Although there is no direct 
evidence of CPGs in humans, there is a growing number of observations 
suggesting their presence in the human spine (reviews by Duysens and Van 
de Crommert 1998; MacKay-Lyons 2002). Taga (1995a,b, 1998) and Taga et 
al. (1991) have successfully used simple CPGs in their neuro-musculo-
skeletal models of human locomotion in order to achieve robust locomotion. 
 
In this paper, we investigate the qualitative influence of reflexes on the 
behavior and stability of musculo-skeletal systems. The goal is to establish 
how reflexive feedback of muscle lengthening, velocity and force, and the 
time delays, present in these reflex arcs, can lead to stable equilibria (i.e. 
posture) and limit cycles (e.g. ankle clonus, gait). As reflex gains or time 
delays are varied, changes may occur in the qualitative structure of the 
solutions to the delayed differentials equations that describe the model. 
These changes are termed bifurcations and may reveal significant behavior of 
the musculo-skeletal system. This study considers stance (i.e. posture), but 
also provides a framework for future research into the influence of certain 
types of reflexes on the behavior and stability of physiologically based gait 
models. 
 
In the next section, the model is outlined. It is a model of stance, consisting 
of an inverted pendulum with an antagonistic muscle pair around the ankle 
joint and reflexive feedback of muscle lengthening, velocity and force. The 
model is complex enough to demonstrate some basic influences of reflexes 
on the qualitative behavior of musculo-skeletal systems. Necessary 
conditions for stable and unstable equilibria to become stable limit cycles are 
discussed and mathematical concepts from the bifurcation analysis are linked 
to known biomechanical concepts such as stiffness. The influence of reflex 
gains, delays and co-contraction on the qualitative behavior of the model is 
investigated by using bifurcation analysis. Finally, the model is fitted to data 
of perturbed and quiet stance. 
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2. Methods 

2.1 Musculo-skeletal model of stance 

A simple posture model is used to investigate the influence of reflex gains, 
delays and co-contraction on the qualitative behavior and stability of 
musculo-skeletal systems. The model consists of an inverted pendulum with 
an antagonistic muscle pair, as shown in Fig. 1. The inverted pendulum 
represents a person who tries to maintain an upright position by flexing and 
extending the ankles. Stance is assumed to be a perturbed equilibrium (e.g. 
by measurement errors of muscle spindles), thus producing sway. The only 
joint in this model represents the ankle joints, and the two muscles represent 
the Tibialis anterior muscle and the Soleus muscle for both legs. The lumped 
Hill-type muscle model is based on the work of Winters and Stark (1985; 
1987) and models both activation and contraction dynamics. It consists of a 
contractile element (CE) and a serial elastic element (SE), which is modeled 
as non-linear spring. The frequently used parallel elastic element has been 
omitted, because it has no influence on the local stability of the considered 
posture (i.e. eigenvalues). Two types of feedback are incorporated in the 
model: intrinsic feedback (force-length and force-velocity relationships of the 
muscle) and reflexive feedback. This feedback defines the visco-elastic 
properties of the muscle pair. 
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Fig. 1 Simplified human posture (left) and dynamic model representation as inverted 
pendulum with muscles (right). Parameters are mass m, moment of inertia I, moment 
arm r. The muscle moment Mmus tries to keep the angle θ to a minimum, despite the 
destabilizing actions of the perturbation moment Mp and gravity g. 
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The equation of motion for the inverse pendulum with mass m, moment of 
inertia around the ankles I, distance from ankles to center of mass lcom and 
gravitational constant g, is written as 

= + +��θ θcom mus psinI mgl M M  (1) 

in which θ is the angle of the pendulum with respect to the vertical position, 
Mmus is the moment around the ankles produced by the muscle forces Fmus 
via their constant moment arms r, and Mp is the perturbation moment 
imposed by the environment. The activation and contraction dynamics of the 
Hill-type muscles are presented in Eqs. 2 and 3, respectively. Both muscles 
are parameterized as a Soleus muscle (Thunnissen 1993; Yamaguchi et al. 
1990) for simplicity (i.e. symmetric model). 

( ) ( ) ( )( )a p v f, , , , , , ,f t t t k k kτ τ τ= ∆ − − −ss mus mus musa a u l v F�  (2) 

( )( )=�
c , ,fce ce ce sel Fv a Fl F  (3) 

Equation 2 is a delay differential equation (DDE). The dependence on time t 
is only written explicitly in case of a delay, because else the equations could 
be mistaken to be non-autonomous. The vector a represents the active 
states of both muscles, and uss is the supra-spinal neural input vector. The 
vectors ∆lmus and vmus represent the muscle lengths (relative to the rest 
lengths) and the muscle velocities, respectively. They are fed back by the 
reflexive gains kp and kv, respectively, with a time delay τ. This feedback of 
muscle lengths and velocities represents the stretch reflexes and reciprocal 
inhibition found in all antagonistic muscle pairs. Force feedback by Golgi 
tendon organs is represented by an ipsilateral feedback of each muscle force 
by a reflex gain kf, with time delay τ.  
Equation 3 is an inverse force-velocity relationship. The vector 
Fvce(a,Flce,Fse) represents the momentary values of the force-velocity 
relationships of the CEs of both muscles, which is obtained by recognizing 
that the force in the SE must be equal to the force in the CE in this muscle 
model. These force-velocity relationships are expressed in terms of the 
momentary values of the force-length relationships of the CEs Flce and the 
forces in the SEs Fse. The elaborate form of Eqs. 1, 2 and 3 is found in App. 
A.1. 
 
The model contains a total of 6 state variables: the angle θ, the angular 
velocity ω, the active states of the Tibialis anterior and the Soleus, ata and 
asol, and the lengths of the CEs of both muscles, lce,ta and lce,sol. However, 
because of reflexive feedback, the angle and angular velocity also appear in 
delayed form, θ(t-τ) and ω(t-τ), respectively. Thus, the system is of infinite 
order. The considered equilibrium is standing upright, which corresponds to 
zero angle, zero angular velocity, and for both muscles constant, equal, 
active states and lengths of the CEs. The muscles have different time 
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constants for increasing and decreasing muscle activation and there is a 
discontinuity in the slope of the force-velocity curve of the CEs at zero 
velocity. These discontinuities are exactly in the equilibrium and render 
bifurcation analysis difficult. Therefore, they have been approximated with 
the help of a 'sharp' tangent hyperbolic function (i.e. steep slope), as shown 
in App. A.2. Numerical simulations showed no significant change in behavior 
between the model with real discontinuities and the one with the smoothed 
discontinuities. 

2.2 Bifurcation analysis 

The purpose of the performed bifurcation analysis is to identify the influence 
of those parameters that can be adjusted by the central nervous system. 
These are assumed to be the supra-spinal neural input vector uss and the 
reflexive feedback gains of the muscle length, velocity and force, kp, kv and 
kf, respectively. The supra-spinal input for both muscles is assumed to be 
equal, thus uss = [uss,ta uss,sol]

T = [uss uss]
T. The influence of a time delay τ, 

inevitably present in all reflex arcs, is also analyzed. Time delays limit the 
maximum reflex gains possible for a stable posture, as is known from control 
engineering. However, the influence of time delays on the occurrence and 
stability of limit cycles is less clear. 
 
A bifurcation is the appearance of a topologically nonequivalent phase 
portrait under parameter variation (Kuznetsov 1998). Local bifurcations of a 
continuous time system, to which we confine ourselves in this paper, may 
occur when eigenvalues of the linearization about an equilibrium pass the 
imaginary axis as parameters vary. The two most common bifurcations for 
such systems are the fold and the Hopf bifurcation, which are conventional 
textbook paradigms (e.g. Arrowsmith and Place 1990; Iooss and Joseph 
1990; Kuznetsov 1998; Seydel 1988). The fold bifurcation is associated with 
the appearance or disappearance of two equilibria. In symmetric systems, 
such as the musculo-skeletal model, the fold bifurcation often manifests itself 
as a pitchfork bifurcation (Kuznetsov 1998 pp 280-282). Beyond this type of 
fold bifurcation, an additional third equilibrium appears or disappears, which 
changes stability at the bifurcation point (eigenvalue of the considered 
equilibrium passes through zero with non-zero speed). It is this type of fold 
bifurcation that is associated with the stability of posture in the musculo-
skeletal model, with the third equilibrium representing the posture. A Hopf 
bifurcation occurs when a conjugated pair of eigenvalues passes the 
imaginary axis with non-zero speed. The Andronov-Hopf theorem gives 
conditions that guarantee that a limit cycle will appear or disappear after a 
Hopf bifurcation (Arrowsmith and Place 1990). Note that there are two 
different scenarios, namely the subcritical and the supercritical Hopf 
bifurcation, but only the latter leads to stable limit cycles. The local stability 
of encountered limit cycles can be assessed by placing a (hyper)surface 
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transverse to the flow near the limit cycle. The crossings of the orbit with this 
surface in a given direction can be seen as a discrete representation of the 
flow near the limit cycle. This discrete map is called a Poincaré map – or first 
return map – and has a state space whose dimension is reduced by one 
relative to the original continuous time system. The limit cycle is represented 
by a fixed point (i.e. rest point) of the Poincaré map. The limit cycle will be 
locally stable if the fixed point of the Poincaré map is locally stable. This is 
determined by calculating the eigenvalues of the Poincaré map, which are 
called Floquet multipliers. All multipliers have to be within the unit circle (i.e. 
in absolute value smaller than 1) for the limit cycle to be locally 
asymptotically stable (Kuznetsov 1998 pp 27). 
 
Stretch reflexes (position and velocity feedback) are generally known to have 
an important regulatory function in posture as well as in locomotion (Houk 
1979). Co-contraction is an effective – but also very energy-consuming – 
way of regulating the visco-elastic properties of muscles and is probably only 
used when necessary. Therefore, our analysis is started by looking at the 
influence of the stretch reflex at a low co-contraction level. A parameter 
space is constructed with the positional gain kp on the horizontal axis and the 
velocity gain kv on the vertical axis. In such a space, the dependence of 
existing bifurcations on those parameters can be shown. The functional role 
of force feedback is less clear and will be analyzed subsequently in the same 
parameter space. The steps of the analysis are described in the paragraph 
below. 
 
Firstly, the equilibria of the DDEs (Eqs. 1, 2 and 3) are calculated for a 
reference set of parameters. At these equilibria, the system is linearized and, 
at least, the rightmost eigenvalues – that is, the eigenvalues with the largest 
real-parts (Lyapunov exponents) – have to be calculated, because these play 
a dominant role in the system's behavior and stability. Secondly, one of the 
parameters is changed so that the rightmost eigenvalue(s) crosses the 
imaginary axis. If it concerns a single eigenvalue with zero imaginary part, a 
fold bifurcation is encountered, whereas if it concerns a conjugated pair of 
eigenvalues, a Hopf bifurcation has occurred. From a fold point a whole 
branch of fold points can be followed through parameter space spanned by kp 
and kv. Similarly, from a Hopf point a branch of Hopf points can be computed, 
which is represented by a set of combinations of kp and kv. 
 
The calculated fold and Hopf branches, with the reflex gains kp and kv as 
parameters, will be used as reference branches for determination of the 
influence of the other parameters. The influence of time delay τ, supra-spinal 
input level uss (i.e. level of co-contraction) and force feedback gain kf will be 
determined by calculation of the fold and Hopf branches in the same 
parameter space, in the same way as described above. Only the parameter 
whose influence is to be determined is changed relative to the reference 
parameter set. The influence of those deviating parameters can be observed 
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by comparing the reference bifurcation branches with the ones with deviating 
parameter sets. Choosing the same parameter space, instead of constructing 
new ones with the deviating parameter on one of the axis, is important since 
it allows the influence of parameters to be compared. 
 
The intersections of fold and Hopf branches can lead to mathematically 
intriguing bifurcations points, such as the Bognadov-Takens bifurcation and 
the fold-Hopf bifurcation (Kuznetsov 1998). These bifurcations were indeed 
encountered in the analysis (Sect. 3.1), but are only discussed as far as is 
considered relevant. It is not within the scope of this paper to review all 
possible behaviors in the neighborhood of such points. More significant is the 
subdivision of parameter space by fold and Hopf branches. This leads to 
different regions in parameter space, each representing a different qualitative 
behavior of the model. 
 
In analyzing musculo-skeletal models, the delays present in the reflex arcs 
result in delayed differential equations (DDEs). The state space for a DDE is 
infinite-dimensional. The ‘DDE-BIFTOOL’ Matlab package (Engelborghs et al. 
2001) is used in order to perform bifurcation analysis for the DDEs. This 
package approximates the most dominant eigenvalues, which allows the user 
to determine the type of bifurcation. Subsequently, DDE-BIFTOOL tests the 
necessary conditions for the bifurcation to be generic. The Floquet multipliers 
of limit cycles, emerging beyond the Hopf branch, are numerically calculated 
by DDE-BIFTOOL by time integration of the variational equation around the 
periodic solution (for details, see Engelborghs et al. 2001).  

2.3 Biomechanical interpretation of fold and Hopf 

bifurcations by linearization of the stance model 

Bifurcation analysis is relatively unknown in the field of biomechanics, 
whereas it can be of great assistance in understanding the influence of 
certain parameters on the behavior and stability of biological systems. In the 
previous subsection (Sect. 2.2), fold and Hopf bifurcations were discussed. In 
this section, a linearized model is constructed in the form of a block diagram, 
which makes it possible to link the fold and Hopf bifurcations to some well-
known biomechanical and control engineering concepts. The musculo-skeletal 
model (Sect. 2.1) is linearized in its equilibrium, which represents stance. 
The equilibrium states are entirely determined by the level of co-contraction 
aco. The active states of the muscles in equilibrium are equal to the level of 
co-contraction (ata=asol=aco), and co-contraction also determines the length 
of the contractile elements (CE), lce,ta and lce,sol. Higher co-contraction leads to 
a decreased length of the CEs such that a new force equilibrium with the SEs 
is established, with higher force and generally higher muscle stiffness and 
viscosity. The angle θ and angular velocity ω are both zero in the equilibrium, 
because both muscles have the same rest length and supra-spinal input level 



CHAPTER 2 

 

36 

uss. The level of co-contraction is mainly determined by the supra-spinal 
input, but can also be increased or decreased by force feedback. Positive 
force feedback will increase the level of co-contraction, while negative force 
feedback will decrease it. Feedback of the muscle lengths and velocities does 
not change the level of co-contraction aco. The stability of the equilibrium 
depends on the level of co-contraction and on the reflexive feedback of 
muscle lengths, velocities and forces. The feedback of muscle lengths and 
velocities is proven to be especially important in keeping the posture stable 
(Van der Helm et al. 2002). Time delays in these reflex arcs limit the 
maximum possible feedback gains, because the gain and phase margin of the 
reflex loop is decreased by the extra phase lag introduced by time delays. In 
other words, time delays jeopardize the stability of the posture at high reflex 
gains. 
 
The linearized model is shown in Fig. 2. The scheme is similar to the 
linearized musculo-skeletal models used by van der Helm and Rozendaal for 
analyzing shoulder posture tasks (Van der Helm and Rozendaal 2000). 
However, in our model, the influence of the SEs of the muscles is not 
discarded, because the Soleus and Tibialis Anterior have long tendons. 
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Fig. 2 Linearized model of the musculo-skeletal system including intrinsic visco-elastic 
properties of the muscle (KCE is stiffness of CE, BCE is viscosity of CE, and HSE is visco-
elastic properties due to SE) and delayed reflexive feedback of muscle length, velocity 
and force with gains kp, kv and kf, respectively. The delay τ is modeled by a Padé 
approximation. Segment model parameters are moment of inertia I, moment arm r
and gravitational stiffness  Kg. Muscle parameters are maximal force Fmax and the 
value of the force-length relationship in equilibrium FlCE(aco). Hact represents the 
muscle activation dynamics. Inputs are supra-spinal input fluctuations δuss=uss-aco, and 
perturbation moment Mp. Output is angle of inverse pendulum relative to vertical θ. 
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Therefore, the SEs of the modeled muscles are compliant (relative to, for 
example, shoulder muscles) and have a large influence on the behavior and 
stability of the posture. In the linearized model, this influence is represented 
by the transfer function HSE. This is recognized as the visco-elastic behavior 
of the SE in series with the CE. In most muscles of the upper extremity, the 
SE is very stiff because the tendons are relatively short. In such cases, the 
influence of the SE in the muscle model can be neglected, but this is 
generally not true for muscles in the lower extremities. 
 
Gravity has a destabilizing effect on the posture of the inverted pendulum 
and is modeled as a negative stiffness. This negative gravitational stiffness 
Kg=-mglcom must be compensated by intrinsic and reflexive feedback so as to 
achieve a stable posture. 
 
Intrinsic feedback is achieved by co-contraction aco. This co-contraction 
results in a certain stiffness KCE and viscosity BCE of the CE of each muscle. 
The stiffness KCE of the muscle model is proportional to the co-contraction 
and the derivative of the force-length relationship at the equilibrium length of 
the CE. The viscosity BCE of the muscle model is proportional to the co-
contraction, the force-length relationship at the equilibrium length of the CE 
and the derivative of the force-velocity relationship at zero velocity of the CE. 
As the length of the CEs is determined by the co-contraction, KCE and BCE 
only depend on the level of co-contraction.  
 
Reflexive feedback is achieved by feedback of muscle length, velocity and 
force with gains kp, kv and kf, respectively. All reflexive feedback is 
proportional to the value of the force-length relationship in the equilibrium 
Flce(aco) , as shown in the block diagram. The time delay τ is modeled as a 
third-order Padé approximation (see App. A.3) in the linearized block 
diagram, which gives good results regarding prediction of the eigenvalues of 
the model (at least up to the transition from linear stability to linear 
instability). The stretch reflex is modeled as the feedback of angle θ and 
angular velocity ω, because these are directly related to muscle length and 
velocity (see App. A.1). Ideally, the feedback of muscle length would purely 
define muscle stiffness and the feedback of muscle velocity would purely 
define muscle viscosity. However, the activation dynamics Hact, visco-elastic 
dynamics HSE and especially the delay τ (Hτ=e-jωτ) add a considerable phase 
lag to the reflex loop, endangering the stability of posture. The visco-elastic 
dynamic properties due to the SE, HSE, not only introduces phase lag, but 
also reduces the total muscle stiffness. It becomes 
Kmus=KSE(KCE+KR)/(KCE+KSE), with KSE the stiffness of the SE, KCE the intrinsic 
stiffness of the CE and KR the reflexive contribution to the stiffness of the CE. 
 
The contribution of force feedback with gain kf is twofold. Firstly, as 
mentioned above, force feedback changes the level of co-contraction aco. 
Positive force feedback will increase the co-contraction and thereby increase 
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the intrinsic and reflexive contributions to muscle stiffness and viscosity. 
Negative force feedback will decrease the muscle stiffness and viscosity. 
Secondly, force feedback introduces some extra dynamics because it 
modulates the intrinsic and reflexive feedback loops, as shown in the block 
diagram (Fig. 2). Positive force feedback makes activation dynamics become 
more dominant, giving more phase lag at low frequencies. This leads to linear 
instability if this phase lag is not compensated by additional feedback of 
muscle velocity. On the other hand, negative force feedback will decrease the 
intrinsic and reflexive contributions to muscle stiffness and viscosity. The 
activation dynamics become less dominant, giving less phase lag at low 
frequencies in the reflexive loops, and the posture might therefore be less 
susceptible to instability.  
It has been long known that negative force feedback exists in humans 
(Sherwood 1997), and at one time it was thought that its sole purpose was 
the protection of muscles from overload. Later, the functions of stiffness 
regulation (Houk 1979) and compensation for muscle fatigue (Kirsch and 
Rymer 1987) were hypothesized. The existence of positive force feedback in 
humans is still the subject of debate (Capaday 2000; Capaday 2001; 
Duysens 2000). The exact role of force feedback in posture and locomotion is 
not yet clear, although it does seem to be significant (Dietz 1998; Dietz and 
Duysens 2000; Duysens et al. 2000). 
 
The linearized model of stance can predict the eigenvalues of the posture 
quite well. Therefore, it will be used to provide insight into the physical 
causes of encountered fold and Hopf bifurcations (see Sects. 3.1-3.4). A 
limitation of the linearized model is that the behavior will only be correctly 
predicted if the posture is stable and the perturbations are small. Hence, 
bifurcation analysis is necessary to predict the behavior of the posture when 
it has become linearly unstable.  
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3. Results of the numerical simulations 

In this section, the influence of stretch reflexes (including reciprocal 
inhibition), time delays, co-contraction and force feedback on the behavior of 
the musculo-skeletal model of stance is discussed. Stability regions of 
posture and periodic movement in parameter space (kp versus kv, Sect. 2.2) 
will be distinguished with the help of bifurcation analysis. The linearized 
model described in Sect. 2.3 will be used to link these findings with known 
concepts in the biomechanical field. Section 3.5 describes how the model is 
fitted to data from literature about quiet and perturbed stance in order to get 
a notion of normal feedback gains in healthy people. 
 
To begin our analysis, a reference parameter set has to be chosen. This 
defines the reference equilibrium in state space and accompanying 
eigenvalues. The reference parameter set is [uss kp kv kf τ]T = [0.1 50 10 0 
50·10-3]T, where uss is the value of both supra-spinal neural inputs, kp, kv and 
kf are the reflexive feedback gains of the muscle lengthening, velocity and 
force, respectively, and τ is the time delay present in the reflex arcs. A low 
level of supra-spinal input (u=0.1) is chosen, which is not enough to stabilize 
the posture without reflexive feedback. The influence of stretch reflexes is 
studied first, and thus the force feedback gain kf is initially set to zero. The 
reference gains kp=50 and kv=10 stabilize the posture. A reference delay τ of 
50 ms is chosen, because this is typical for the short latency reflexes found in 
human ankle flexors and extensors (Sinkjaer et al. 1988). These parameters 
give an equilibrium at 

ta sol ce,ta ce,sol 0.1 0.1 0.936 0.936 0 0T Ta a l l θ ω = =    eq,refx , 

with accompanying rightmost eigenvalues -1.46 4.54j= ±
rm,ref
λ  (i.e. 

posture is stable). As mentioned in Sect. 2.3, the states of the equilibrium 
xeq only depend on the value of the supra-spinal inputs uss and on the force 
feedback gain kf. However, the stability of the equilibrium also depends on 
the positional feedback gain kp, the velocity feedback gain kv and the delay τ 
of the reflex arc. 

3.1 Influence of stretch reflexes on model behavior and 

stability 

The influence of stretch reflex gains on the behavior of the model is explored 
by looking at bifurcations in parameter space, with the positional gain kp on 
one axis and the velocity gain kv on the other. A bifurcation point is found by 
varying one parameter while looking at the rightmost eigenvalues of the 
equilibrium, because they dominate the system behavior. Figure 3 shows the 
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real part of the rightmost eigenvalues λrm in dependence of kp, while the 
other parameters are kept constant at their reference value. 
 
The events for which the rightmost eigenvalues go through the imaginary 
axis are marked in the figure by circles and correspond to a fold and a Hopf 
bifurcation. Distinguishing between a Hopf and a fold bifurcation from this 
figure is not possible. However, looking at the imaginary part of the 
eigenvalues will reveal the nature of the bifurcation (Sect. 2.2). 
 
A fold and a Hopf branch are continued in parameter space, with the 
previously determined bifurcation points as starting points. Figure 4 shows 
the fold and the Hopf branch as well as the starting points. The fold branch is 
a vertical line, indicating that the fold bifurcation only depends on kp. 
 
The fold and Hopf branches divide parameter space into four regions, marked 
I, II, III and IV in the figure. The intrinsic stiffness of the muscles, induced by 
a co-contraction of 10 percent, is too small to compensate for the negative 
stiffness caused by the gravitational force. Thus, without reflexive feedback 

([kp kv]T = [0 0]T in the figure) the pendulum will fall to ±π, because the 
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Fig. 3 The real part of the rightmost eigenvalues versus the positional feedback gain 
kp. The other parameters are kept constant at reference values. The left marking
represents a fold bifurcation (one eigenvalue through zero); the right marking
represents a Hopf bifurcation (conjugated pair of eigenvalues through imaginary axis). 
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muscles have no parallel element. Reflexive feedback of the muscle 
lengthening will increase the muscle stiffness. For a given level of co-
contraction, a certain minimal positional feedback gain kp,min  is necessary in 
order to compensate for the negative ‘gravitational stiffness’ Kg. This minimal 
feedback gain of the muscle length, kp,min, is represented by the vertical fold 
bifurcation line in the figure. Thus, in region I and II the person falls because 
the total ankle stiffness, caused by muscles and gravity, is negative. 
For stable posture, besides the minimal positional feedback gain kp,min ,a 
minimal velocity feedback gain kv,min is also necessary. Velocity feedback is 
necessary to compensate for the phase lag caused by time delay in the reflex 
arcs, muscle activation dynamics and the presence of a compliant SE (Sec 
2.3). Figure 5 shows the minimal feedback gains to be [kp,min kv,min]T = [11.7 
5.5·10-2]T. This point is an intersection of the fold and Hopf branch and has a 
double zero as rightmost eigenvalues. It is, in fact, a Bognadov-Takens (BT) 
bifurcation and it is the start of the Hopf branch in parameter space.  
The lower part of the Hopf branch (Fig. 4), up to the turn ([kp kv]T = [165.6 
27.6]T), represents all possible positional feedback gains kp with 
accompanying minimal velocity feedback gains kv. For higher velocity gains, 
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Fig. 4 Hopf and fold bifurcations in parameter space. The parameters are the 
positional feedback gain kp and the velocity feedback gain kv. The starting points of the 
bifurcation branches are marked and correspond to the marked points in Fig. 3. The 
fold and Hopf branch divide the parameter space in four different regions: I, II, III, IV. 
In region I and II the posture is unstable and the person will 'fall'. The posture is stable 
in region III and in region IV oscillatory movements are experienced (i.e. limit cycles). 
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the posture is stable; for lower gains it is unstable. However, if velocity gains 
increase too much the reflex loop also becomes unstable. The upper part of 
the Hopf branch is associated with these maximal velocity feedback gains. To 
the right of the turning point of the Hopf branch the posture is also unstable, 
because the positional feedback is too high for any velocity feedback. Thus, 
in region III the posture is stable because the lack of intrinsic stiffness is 
compensated by a large enough positional feedback. In addition, the phase 
lag, introduced mostly by time delay, is compensated by a velocity feedback.  
If one travels from region III to IV across the Hopf branch, the phase and/or 
gain margin reduces and the stability of the posture vanishes. Instead, a limit 
cycle originates around the equilibrium states of the previously stable 
posture. Limit cycles can only exist for non-linear systems, and their local 
stability is determined by the eigenvalues of the Poincaré map (i.e. 
linearization about the cycle), called Floquet multipliers (Sect. 2.2). The 
Floquet multipliers of the limit cycles were calculated and the absolute values 
were always less than unity, indicating stable limit cycles just beyond the 
Hopf branch in all of region IV. In Fig. 6, the size of the imaginary part of the 
conjugated pair of eigenvalues associated with the Hopf bifurcation is shown. 
The size of the imaginary part Im is directly related to the period T of the 

sinusoidal periodic solutions just beyond these Hopf points (T=2π/Im).  
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Fig. 5 Zoom-in of Fig. 4. BT is a Bognadov-Takens bifurcation, the first intersection of 
fold and Hopf branch and representing the minimal feedback gains [kp,min kv,min]T = 
[11.7 5.5·10-2]T above which the posture will be stable (up to certain maximum gains). 
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Along the Hopf branch, for increasing velocity gain kv, Im increases (i.e. T 
decreases) from 0 rad/s at the BT to16.0 rad/s at the second intersection of 
the fold and Hopf branch. This intersection has a zero and a conjugated pair 
of eigenvalues on the imaginary axis and is in fact a fold-Hopf (FH) 
bifurcation. Left from the FH, in region I, the limit cycles are unstable. In the 
neighborhood of the BT and FH bifurcations, complex dynamical behavior can 
be expected, such as homoclinic cycles (BT) and tori (FH). However, analysis 
of these complex behaviors is not within the scope of this paper. See 
Kuznetsov (1998) for more information about BT and FH bifurcations, and 
about the possible system behavior in their neighborhoods. 
 
The observed limit cycles do not represent the sway experienced during 
stance, because sway is assumed to be the result of perturbations acting on a 
stable equilibrium (Sect. 2.1). They are more likely to be related to a 
pathological case termed ankle clonus. Clonus is a sustained rhythmical 
contraction of muscles that occurs after a sudden stretch and is often caused 
by injury to the central nervous system. Hidler and Rymer (1999, 2000) 
showed that the presence of two conditions lead to clonus, namely, the 
presence of significant delays in the reflex paths and an increase in effective 
reflex gains, caused by a reduced motoneuron firing threshold. The ankle is 
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Fig. 6  Size of imaginary parts Im of conjugated pair of eigenvalues related to the Hopf 
bifurcations are plotted along the Hopf branch. The period T of limit cycles just beyond 
these Hopf points is about T=2π/Im. 
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one of the most distal joints, which means that there are large time delays in 
its reflex arcs. This is why ankle clonus is a quite common type of clonus.   
The limit cycles to the right and above the Hopf branch (Figs. 4 and 6) are 
caused by similar mechanisms to those causing ankle clonus, namely, high 
reflex gains in combination with a considerable time delay in the reflex arcs. 
The period of the oscillations, associated with ankle clonus, depends on the 
feedback gains of muscle lengthening and velocity and varies between 1.8 
and 2.5 Hz (Fig. 6). In literature, frequencies of about 3 to 8 Hz are reported, 
but these are usually assessed when the patient is seated. It is therefore not 
surprising that our simulated frequencies, assessed using a model of stance, 
are somewhat lower (the moment of inertia about the ankles is much larger 
in stance compared to sitting). 

3.2 Influence of reflex delay on model behavior and 

stability 

The influence of time delay τ on the behavior of the posture model is shown 
in Fig. 7 in parameter space. The fold branch does not change for different 
delays, because it represents the muscle length feedback kp,min for zero ankle 
stiffness, and stiffness is defined at zero frequency. Time delay only adds 
phase lag proportional to frequency (Hτ=e-jωτ) and has no influence on 
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Fig. 7 Influence of time delays τ on fold and Hopf branches. Fold bifurcation branch is 
unaffected by delay. Hopf bifurcation branch shrinks with increasing delay. 
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stiffness and therefore none on the location of the fold bifurcation in 
parameter space either. However, time delay has a tremendous influence on 
the Hopf branch. For increasing delay, the Hopf branch 'shrinks' because it 
becomes harder to compensate for the extra phase lag introduced by this 
delay. This causes the region of reflex gains for which the posture is stable 
(region III in Fig. 4) to become smaller. 
The period of the stable limit cycles, emerging beyond the Hopf branch, will 
increase with increasing time delay. The frequency of stable oscillations is up 
to 6.3 Hz for zero time delay, up to 2.5 Hz for 50 ms time delay (as 
mentioned in the previous section), up to 1.7 Hz for 100 ms time delay, and 
up to 1.2 Hz for 150 ms time delay. These maximum frequencies lie in the 
neighborhood of the FH. 
 
Figure 8 shows a zoom-in of parameter space at the BT point. The minimal 
velocity feedback gain kv,min necessary for stable posture increases for 
increasing time delay τ, because the extra phase lag of the time delay has to 
be compensated by extra velocity feedback. The figure also shows that 
without time delay no velocity feedback would be necessary at all to obtain 
stable posture (though it might give better transient response). 
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Fig. 8 Zoom-in of Fig. 7.  Increasing time delay increases the minimal velocity 
feedback, kv,min, necessary for stable posture. 
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3.3 Influence of co-contraction on model behavior and 

stability 

Increased supra-spinal input uss leads to increased co-contraction aco and so 
to shortened CEs. In other words, the active states and lengths of the CEs of 
the muscles in equilibrium change. In Fig. 9, the influence of increased 
supra-spinal inputs uss on the fold bifurcation in terms of positional feedback 
gain kp is shown. The intrinsic stiffness of the muscles becomes greater for 
increasing co-contraction, and for uss>0.23 the stiffness has become so great 
that reflexive feedback is no longer necessary for stable posture (kp<0 for 
uss>0.23 in Fig. 9). In a parameter space of kp versus kv (as in Fig. 4), this 
would manifest itself as a shift of the vertical fold branch to the left for 
increasing uss.  
 
The influence of increased supra-spinal input uss on the Hopf branch is shown 
in Fig. 10. This figure shows that the Hopf branch grows rapidly with 
increasing co-contraction and thus provides stable posture for much larger 
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Fig. 9 Influence of supra-spinal input uss, in this case equal to the co-contraction aco

(no force feedback), on fold bifurcation. The fold branch represents the minimal muscle 
length feedback kp,min, which exactly compensates for the negative gravitational 
stiffness: the total ankle stiffness is zero. Higher co-contraction increases the intrinsic 
muscle stiffness and therefore less muscle length feedback is necessary for stable 
posture. For neural inputs higher than 0.23 (23% of maximal co-contraction) the 
posture is stable without any reflexive feedback at all.  
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feedback gains. A large part of this growth is due to the fact that for 
increasing co-contraction the muscles will work on a lower part of their force-
length relationship (below optimum length), thereby decreasing the effective 
reflex loop gain. Moreover, increasing the intrinsic stiffness of the muscles 
decreases the loop gain further, especially at low frequencies. 
The period of the stable limit cycles, emerging beyond the Hopf branches, will 
decrease slightly with increasing co-contraction. The frequency of the stable 
oscillations is up to 2.5 Hz for 10% co-contraction (as mentioned in Sect. 
3.1), up to 2.7 Hz for 20-30% co-contraction, and up to 2.8 Hz for 40% co-
contraction.  

3.4 Influence of force feedback on model behavior and 

stability 

The influence of force-feedback in musculo-skeletal systems is still a topic of 
debate. Force feedback in the model of stance has two consequences: it 
changes the equilibrium by changing the level of co-contraction aco (Sec 3.3) 
and it modulates the intrinsic and reflexive feedback loops (Sec 2.3). The 
solid lines in Fig. 11 show the influence of force feedback with gain kf on the 
fold bifurcation (positive kf means positive force feedback).  For positive force 
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Fig. 10 Influence of neural input uss, in this case equal to the co-contraction aco (no 
force feedback), on Hopf branches. Increased level of co-contraction lowers the 
effective reflex loop gain and increases the intrinsic muscle stiffness, which leads to 
larger Hopf branches. 
 
 
 



CHAPTER 2 

 

48 

feedback, less or no positional feedback is necessary in terms of kp to obtain 
positive ankle stiffness; for negative force feedback more positional feedback 
is necessary. To merely see the modulation effect of force feedback, the 
supra-spinal inputs were adapted such that there was no increase in co-
contraction (i.e. same equilibrium for all kf). This is represented by the 
dashed lines and shows a linear relation between kp and kf.  
 
The influence of force feedback on the Hopf branch is shown in Fig. 12. The 
modulation effect (dashed lines) of positive force feedback makes the Hopf 
branch shrink considerably, which is compensated only slightly by the effect 
of increased co-contraction. Negative force feedback, on the other hand, 
enlarges the Hopf branch. To summarize, positive force feedback increases 
the muscle stiffness (intrinsic and reflexive), but the posture becomes more 
susceptible to an unstable reflex loop. For negative force feedback, it is 
precisely the other way around.  
 
The frequency of stable oscillations is not very sensitive to increasing force 
feedback. It is up to 2.6 Hz for negative force feedback with gain kf=-1.0·10-5 
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Fig. 11 Influence of force feedback kf on fold bifurcation. Positive kf means positive 
force feedback. Solid line shows influence of force feedback on fold bifurcation. Positive 
force feedback increases the co-contraction and modulates the intrinsic and reflexive 
feedback loops. This increases ankle stiffness, and therefore less muscle length 
feedback kp is necessary. The influence of the modulation effect alone is shown by the 
dashed line (co-contraction is kept constant by adapting the supra-spinal input uss). 
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and up to 2.5 Hz for no force feedback (as mentioned in Sect. 3.1) or positive 
force feedback with gain kf=1.0·10-5.  

3.5 Model fit to data of quiet and perturbed stance 

To get a notion about the reflex gains experienced during posture, the model 
was fitted to data from literature about disturbance rejection and quiet stance 
in the sagittal plane. Mihelj et al. (2000) measured the effective ankle 
stiffness (i.e. stiffness of ankle muscles plus gravitational stiffness) in the 
sagittal plane in response to disturbances, relying mainly on ankle strategy 
(i.e. counteracting perturbations with your ankle joints only). They found it to 
be between 9 and 12 Nm/°. We roughly estimated the relative damping 
factor at between 0.6 and 0.8 by taking the logarithmic decrement of the 
presented graphs. The combinations of reflex gains [kp kv]T reflecting these 
data is shown in Fig. 13 (light gray area).  
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Fig. 12 Influence of force feedback kf on Hopf branches. Positive kf means positive 
force feedback. Solid lines show influence of force feedback on the Hopf branch 
(increased co-contraction and modulation of reflexive and intrinsic loops). The 
influence of the modulation effect alone is shown by the dashed lines (co-contraction is 
kept constant by adapting the supra-spinal input uss). The effect of modulation is 
dominant and causes the Hopf branch to shrink for positive force feedback. 
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reflex gains during quiet stance 

reflex gains during perturbation
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Fig. 13 Areas of reflex gains for the stance model fitted to data from the literature of 
perturbed stance (light gray) and quiet stance (dark gray).  
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Fig. 14 Zoom-in of Fig. 13. The overlap of the areas of reflex gains, experienced 
during perturbed and quiet stance, could indicate that stretch reflexes play a major 
role in stabilizing the posture in both cases.  
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Whether or not ankle stiffness – reflexive stiffness in particular – is important 
in quiet stance remains a topic of debate. Some believe anticipatory control 
makes a major contribution to stability during quiet stance (Masani et al. 
2003; Morasso and Sanguineti 2002). However, Fitzpatrick et al. (1994) have 
shown that afferent feedback from ankle muscles is sufficient for a stable 
upright stance. Therefore, we fitted our model to data of quiet stance in the 
sagittal plane with the subject’s eyes closed (Winter et al. 1998) and also 
plotted it into Fig. 13 (dark gray area). Figure 14 zooms in on the areas of 
reflex gains. The figure shows that the areas of reflex gains for perturbed 
stance and quiet stance overlap. 
 
Most experts agree that reflexes play a crucial role in perturbed stance. For 
quiet stance, it has been proposed that anticipatory control may play a key 
role. However, the overlap of the calculated areas of reflex gains for 
perturbed stance and quiet stance could be an indication that stretch reflexes 
are the major control mechanisms in both cases. 
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4. Discussion 

4.1 How should stability be quantified? 

The upright standing posture considered in this paper is an example of a 
perturbed equilibrium. Fluctuations around the equilibrium can be caused by, 
for example, measurement noise in muscle spindles, noise in the neural 
processing of the information, or environmental perturbations such as a 
push. If these fluctuations are small, local asymptotic stability of the posture 
guarantees convergence back to the equilibrium. The local stability is defined 
by the eigenvalues of the equilibrium. Similarly, the stability against small 
perturbations in walking is determined by the Floquet multipliers of the gait 
cycle, which Hurmuzlu et al. (1996) calculated from experimental data 
constructing a Poincaré map. Another method to assess local stability from 
experimental gait data is the calculation of maximum finite-time Lyapunov 
exponents (Dingwell and Cusumano 2000; Dingwell et al. 2000). Traditional 
measures of gait stability, based on kinematic variability, are poor predictors 
of local stability (Dingwell et al. 2001). 
 
For both walking and posture tasks, the stability against larger perturbations 
is of great importance. In walking, for example, perturbations like tripping, 
stumbling and pushing are frequent in daily life (Forner Cordero 2003). 
Stability against these kinds of perturbation cannot be determined by the 
calculation of the eigenvalues, because for large perturbations linearization is 
in general not justified. In fact, for large perturbations the non-linear terms 
of the differential equations determine the stability. Thus, local stability is 
only a necessary condition for stability against larger perturbations.   
 
An interesting measure of stability is the basin of attraction. The basin of 
attraction of an attractor, such as a limit cycle, is the set of all the initial 
conditions in state space that lead to an orbit that approaches the attractor 
(Seydel 1988). Schwab and Wisse (2001) calculated the basin of attraction of 
the gait cycle of the simplest walking model for different slopes (i.e. different 
gravitational energy inputs). After comparison with the Floquet multipliers at 
these slopes, they concluded that there is no obvious relation between the 
local stability and the size of the basin of attraction. In other words, a better 
local stability margin does not imply a better stability margin against large 
perturbations.  
 
The interpretation of the basin of attraction is easy in the above case, 
because the basin of attraction equals all combinations of initial stance leg 
angles and angular velocities that lead to stable walking. If the basin of 
attraction is larger, the bipedal robot is easier to start up and this is 
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desirable. Thus, Schwab and Wisse (2001) concluded that the size of the 
basin of attraction is the most important stability measure in designing such 
bipedal robots. The question is if the basin of attraction is also a good 
measure of stability for human walking. In models of human walking, the 
basin of attraction can theoretically be computed in the same way as is done 
for the simplest walker, namely, by searching numerically the state-space for 
all initial conditions under which the system returns to the cycle. However, 
more realistic models of walking can only be described by high-dimensional 
models, and this implies two problems. The first is the high computational 
effort required: the computation time for calculating the basin of attraction 
grows exponentially with system dimension, while the computing time for the 
2D basin of the simplest walker is already long. The second problem is one of 
interpretation. Not only is the size of the basin of attraction given in terms of 
(hyper)volume of importance, but its shape as well. If the basin of attraction 
increases substantially in some dimensions of low importance but decreases a 
little in a very important dimension, looking only at the (hyper)volume of the 
basin leads to the wrong conclusion, namely, that the stability margin has 
increased. Another problem concerning the interpretation of the basin of 
attraction is that the states of the model are often an abstraction or 
simplification of reality and/or are not measurable (e.g. muscle activation). 
Thus for many states it is not known how much they are perturbed in real-life 
walking.  
 
Stability in experimental gait studies is often quantified by indices, coming 
from rather intuitive tests and having few predictive capabilities (Boulgarides 
et al. 2003). Moreover, the question remains whether the perturbations given 
in such tests are representative of those in everyday life. It would be useful 
to link the stability measures from theoretical and experimental research in 
the future to see how they are related and possibly to propose better ways of 
determining stability through experimental research. 

4.2 Concluding remarks 

Bifurcations analysis was performed to show the influence of stretch reflexes, 
time delays, co-contraction and force feedback on the behavior and stability 
of a model of stance. A fold and a Hopf branch divided the parameter space, 
in terms of muscle length and velocity feedback gains, into regions of 
different behavior: unstable posture, stable posture and stable limit cycles. A 
linearized model was constructed and provides insight in the biomechanical 
causes for the bifurcations. The fold bifurcation represents zero ankle 
stiffness, below which the posture is unstable and a person falls. Ankle 
stiffness is increased by extra muscle length feedback, increased co-
contraction or positive force feedback. Feedback of muscle velocity is 
necessary to compensate for phase lag caused by time delay in the reflex 
arcs, muscle activation dynamics and the presence of a compliant SE. The 
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Hopf bifurcation represents the transition to unstable reflex loops. Beyond a 
Hopf bifurcation the posture becomes unstable and, in case of positive ankle 
stiffness, a stable limit cycle emerges. The Hopf branch shrinks for increasing 
time delays, making the posture more susceptible to unstable reflex loops. 
Older people or people with injuries to the central nervous system often have 
larger time delays in their reflex arcs. The fact that these groups of people 
often have trouble with posture tasks, such as standing, might be explained 
by this increased time delay. Positive force feedback also reduces the size of 
the Hopf branch. More co-contraction leads to a growth of the Hopf branch, 
causing a larger region of postural stability in terms of stretch reflex gains. 
The period of the limit cycles, emerging beyond the Hopf branch, is mainly 
dependent on muscle length and velocity feedback and on the amount of 
time delay present in the reflex arc. The stable limit cycles do not correspond 
to the sway observed in human stance, but rather to a neural deficiency 
termed ankle clonus. This is caused by higher effective reflex gains (i.e. 
reduced motoneuron firing threshold) together with the large time delay 
present in the reflex arcs of the ankles. A model fit to data of perturbed and 
quiet stance in healthy subjects shows that stretch reflexes might be the 
major control mechanism in both cases. 
This study has considered the influence of reflexes on stance by combining 
bifurcation analysis with more common biomechanical concepts and tools. It 
provides a framework for future research: we will develop this line of 
research to look at rhythmic tasks such as walking. 
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Appendix A. Model equations  
 
The musculo-skeletal model contains 6 states: the activities of both muscles, 
ata and asol, the length of the CEs of both muscles, lce,ta and lce,sol, and the 
angle θ and angular velocity ω of the inverted pendulum.   
Stretch reflexes are modeled by delayed feedback of the length of both 
muscles (relative to the rest lengths lm0), ∆lmus,ta and ∆lmus,sol, and the 
velocities of both muscles, vmus,ta and vmus,sol. The lengths are fed back with 
gain kp and the velocities with gain kv. Force feedback is modeled as delayed 
feedback of muscle force with gain kf. 
A direct relation is assumed between the muscle lengths and velocities and 
the angle and angular velocity:  
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Thus, reflexive feedback is modeled as delayed feedback of angle θ(t-τ), 
angular velocity ω(t-τ), Fse,ta(t-τ) and Fse,sol (t-τ). The equations of motions 
are: 
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=�θ ω  (A.6) 

 

( )= + − +�ω θ11 p 12 se,ta se,sol 13 sinc M c F F c  (A.7) 

 
The force-length relationships of CEs of the muscles are:  

( )− −
=

2
2 ce,ta 3

ce,ta

c l c
Fl e  (A.8) 

( )− −
=

2
2 ce,sol 3

ce,sol

c l c
Fl e  (A.9) 

 
The non-linear springs of the SEs of both muscles are: 

( )( )− − − = −
  

θ8 1 ce,ta 91

se,ta 10 ta ce,ta 7min , 1
c c l c

F c a Fl c e  (A.10) 

( )( )− − − = −
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c c l c
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The force-velocity relationships of the muscle are: 

=
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The maximum velocities of the muscles are: 

( )( )= − −max,ta 14 15 ta ce,ta1 1v c c a Fl  (A.14) 

( )( )= − −max,sol 14 15 sol ce,sol1 1v c c a Fl  (A.15) 

 
The activation and de-activation time constants of the muscle activation 
dynamics are: 
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Boundary conditions on certain states and functions 

≤ ≤ta0 1a  ≤ ≤sol0 1a  

≥ce,ta 0l  ≥ce,sol 0l  (A.18) 

≥se,ta 0F  ≥se,sol 0F  

Constants (all positive) used in the equations of motion in terms of 

musculo-skeletal parameters 
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Musculo-skeletal parameters 

m  = 80 kg mass of male person   
I  = 121.6 kgm2 mass moment of inertia around ankles 
lcom  = 1.0  m length between COM and ankles 
g  = 9.81  m/s2 gravity constant 
r  = 0.04  m moment arm about ankles 
lm0  = 0.305  m rest length of muscle 
lt  = 0.27  m tendon length 
lce0  = 0.1  optimum length of CE (normalized on lm0) 
lcesh  = 0.03  shape parameter determining width of Flce 

Fmax  = 8792  N  maximum active muscle force 
mver  = 0.5  scaling parameter for maximal contraction velocity 
mvvm = 2lm0  1/s maximal contraction velocity of unloaded CE 
mvsh  = 0.2  shape parameter of curvature of Fvce 

mvshl  = 0.5  shape parameter for lengthening curve of Fvce 
mvml  = 1.3  maximal force gain for lengthening muscles 
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sesh = 4.4  shape parameter of curvature of exponential  
   slope of SE 
sexm = 0.043  maximal extension of SE (normalized on lm0) 
τac = 11.33·10-3  s time-constant for increased muscle activation 
τda = 31.58·10-3  s  time-constant for decreasing muscle activation 
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Appendix B. Approximation of discontinuity 

The function F(x) is defined as: 

− <
= 


     if 0
( )

    else

x x
F x

x

 

(B.1) 

 
The function can be approximated by the following continuous function with 
the help of hyperbolic tangent function: 

( )cont s( ) tanhF x x c x=  (B.2) 

 
This way the discontinuities in the equations of motion (App. A.1) are 
smoothed into continuous functions for the performance of bifurcation 
analysis. The derivatives of the functions are also continuous. 
The parameter cs represents the steepness constant. The higher cs is, the 
better the discontinuity is approached. The drawback is that a higher cs gives 
a stiffer system. The steepness constant cs is taken 1000 in all the 
simulations. 
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Appendix C. Padé approximation of time 

delay 

For the linearized model discussed in Sect. 2.3, the time delay was modeled 
by a third-order Padé approximation. A Padé approximation of a time delay is 
based on a good approximation in the frequency domain. In the time domain 
the results will be less good. For the prediction of the eigenvalues associated 
with the equilibrium of the posture model of Sect. 2.1, a third-order Padé 
approximation gave good results (the higher the order, the better the 
approximation). The transfer function of the Padé approximation is as 
follows: 
 

′

− +
=

+ + +

τ τ

τ τ τ

2 2

Pade 3 3 2 2

3 24 60

9 36 60

s s
H

s s s
 (C.1) 

 
To give an idea about the validity of the delay approximation, a comparison is 
made between the Padé approximation and the real delay in Laplace (Hτ=e-

jωτ) with a delay τ  of 50 ms. This is shown in the Bode plot of Fig. C.1. 
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Fig. C.1 Comparision of real delay of 50 ms (solid) and the third-order Padé 
approximation (dashed). The approximation is good up till 50 rad/s. 
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The figure shows that the approximation in the frequency domain is good up 
till ωu=50 rad/s. This is much larger than the open-loop (i.e. before closing 
the reflex loop) bandwidth of the system. Therefore, depletion of the phase 
and gain margin, defining the transition of linear stability to linear instability, 
happens at frequencies much lower than the frequency up to which the Padé 
approximation is valid. Thus, the approximation is at least valid up to the 
transition from linear stability to linear instability. 
Moreover, as long as the rightmost eigenvalues λrm of the system have an 
absolute value much smaller than the frequency ωu up to which the Padé 
approximation is valid (i.e. |λrm|<<ωu), the prediction of the eigenvalues by 
the linearized model will also be quite good in the right half plane. 
 
As an example the eigenvalues were calculated of the equilibrium with 
parameter set [uss kp kv kf τ]T = [0.1 1000 10 0 50·10-3]T, thus way out of the 
stable area of the parameter space (see Fig. 4 in Sect. 3.1). The rightmost 
eigenvalues of the DDEs, calculated by DDE-BIFTOOL, are in this case 
λrm=6.88±12.31i. The rightmost eigenvalues, predicted by the linearized 
model, are in this case λrm=6.86±12.17i. Thus, while the absolute value of 
these eigenvalues, which is 14.1, is not very much lower than 50, the 
prediction by the linearized model still gives a reasonably good approximation 
of the most dominant eigenvalues. 
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Abstract 

Humans show great energy efficiency and robustness in rhythmic tasks, such 
as walking and arm swinging. In this study a mathematical model of rhythmic 
limb movement is presented, which shows that tight local coupling of Central 
Pattern Generators (CPGs) to limbs could explain part of this behavior. 
Afferent feedback to flexor and extensor centers of the CPG is crucial in 
providing energy efficiency by means of resonance tuning. Feedback of 
positional information provides resonance tuning above the endogenous 
frequency of the CPG. Integral feedback provides resonance tuning at and 
below the endogenous frequency.  Feedback of velocity information is 
necessary to compensate for the time delay in the loop, coupling limb to 
CPG; without velocity feedback bi-stability occurs and resonance tuning is not 
possible at high movement frequencies. The concepts of energy efficient and 
robust control of rhythmic limb movements are also applicable to robotics. It 
is the first CPG model, which provides resonance tuning at natural limb 
frequencies above and below its endogenous frequency. 
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1. Introduction 

Locomotion is a compromise between different goals such as energy 
efficiency, stability and maneuverability. Ballistic models of human gait show 
remarkable resemblances with unperturbed human gait (Kuo 2001; Mochon 
and McMahon 1980). This shows the importance of energy efficiency in 
human gait control: people exploit the natural dynamics as much as possible, 
just like the ballistic gait models do. However, in general the ballistic gait 
models possess poor stability properties, unlike human gait. The existence of 
neural networks on spinal level, termed Central Pattern Generators (CPGs), 
might contribute to the coexistence of energy efficiency and good stability 
properties in human gait. The CPG provides alternating motor patterns in 
such a way that stable gait is obtained. Proof for this originates mainly from 
cat studies (Amemiya and Yamaguchi 1984; Brown 1911; Shik et al. 1966). 
 
Humans not only exploit the limb dynamics in locomotion. When people are 
asked to move pendulums about their wrist in the preferred frequency, this 
frequency scales linearly with the square root of the inverse of the 
pendulum’s length, thus with its natural frequency (Kugler and Turvey 1987). 
The fact that the preferred frequency was always higher than the natural 
frequency of the pendulum is probably due to the joint stiffness, caused by 
the muscles. Hatsopoulos and Warren (1996) showed that the preferred 
frequency at which subjects swung their forearms in the vertical plane was 
equal to the natural frequency of the muscle-limb system including added 
mass and spring loading. Abe (2003) instructed subjects to swing their 
forearms rhythmically in the vertical plane under various frequency 
conditions. He showed that for frequencies higher then the natural limb 
frequency dictated by gravity, the joint stiffness is modulated in such a way 
that the natural frequency of the total muscle-limb system matches the 
instructed movement frequency. Bennett (1993) argues that even during 
non-rhythmical voluntary arm movements the joint stiffness is adjusted in 
such a way that the resonance frequency of the muscle-limb system equals 
the principal frequency component of the movement. These studies show 
that regulation of the joint stiffness determines the frequency of the 
rhythmical limb movements. 
 
The above-mentioned studies indicate that CPGs are vital in performing 
rhythmic movements, such as walking. These movements are energy 
efficient and robust, but it is not known how this is achieved and what the 
role of the CPG and its coupling to the musculo-skeletal system might be. 
Furthermore, it has been shown that the frequency of rhythmical arm 
movements is controlled by modulation of the joint stiffness, but the 
underlying principles – especially the role of afferent feedback of the muscles 
to the CPG – are not fully understood. 
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The main goal of this study is to determine the roles of CPGs, afferent 
feedback and modulation of joint stiffness in providing energy efficient and 
robust rhythmic limb movement. This goal is achieved by answering the 
following research questions: (1) Under which conditions does the CPG 
entrain to the limb dynamics and what is the role of afferent and efferent 
coupling in this? (2) What is the influence of time delay in the loop that 
couples the CPG to the limb and is compensation for this delay possible? (3) 
Which afferent feedback is necessary for the CPG to obtain energy efficient 
rhythmic limb movement? (4) Where does the robustness against changes in 
the limb dynamics come from? These questions are answered using a model 
of a single limb tightly coupled to a CPG.  The CPG model and methods for 
analyzing its coupling to a limb will be discussed in Sect. 2. The limb is 
represented by a mass-spring-damper model and is used for a general 
analysis (Sect. 3) that can also be applied in robotics (see secondary goal 
below). 
 
The secondary goal of this study is to provide a method for energy efficient 
and robust control of rhythmic arm movements in robotics. Williamson 
(1998) successfully used Matsuoka’s CPG model to control rhythmic 
movements of robot arms. The CPG model was able to tune into the robot 
arm’s resonance frequency, which is termed resonance tuning and provides 
energy efficient arm control. However, the CPG model only showed this 
resonance tuning behavior in case the resonance frequency of the arm was 
higher than the endogenous frequency ωCPG of the CPG (i.e. the frequency 
without sensory input). Hatsopoulos (1996) used a van der Pol oscillator as 
CPG model and coupled it to a mass-spring system, which represented the 
limb dynamics. Also in this case, resonance tuning was only possible above 
the endogenous frequency of the CPG. Resonance tuning below the 
endogenous frequency is for example useful for systems with varying 
stiffness. The CPG model presented in this paper provides resonance tuning 
below and above its endogenous frequency and is therefore able to provide 
energy efficient control of various types of arms with a broad range of natural 
frequencies. 
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2. Analysis of rhythmic limb movement 

An overview of the model of rhythmic limb movement is shown in Fig. 1. It 
consists of a limb coupled to a Central Pattern Generator (CPG). The CPG 
model receives sensory information from the limb, which is processed and 
subsequently presented to the (spinal) network generating the basic rhythm. 
This network is represented by a half-center model (Brown 1914), whose 
outputs yF and yE control limb flexion and extension, respectively. The CPG 
model is discussed in detail in Sect. 2.2.  
The model of the limb is kept as general and simple as possible, because this 
study is focused on the capability of the CPG to entrain to different types of 
limbs; it is not focused on the limbs themselves. A mass-spring-damper 
model corresponds to the limb’s moment of inertia I about the joint, the joint 
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Fig. 1 Overview of the model of rhythmic limb movement, in which the limb is tightly 
coupled to a Central Pattern Generator (CPG). The mass-spring-damper model 
represents a robot arm or human limb with moment of inertia I, joint stiffness Kj and 
joint damping Bj. The limb’s actuation is represented by gain ka, linearly translating the 
CPG’s output eCPG=(yF -yE) to a moment of force Ma. The half-center model of the CPG 
receives afferent information from the limb on its inputs sF and sE with time delay τc. 
The P-type CPG only has afferent feedback of limb angle θ with gains gp (solid lines). 
The PID-type CPG has additional afferent feedback of angular velocity ω and integrated 
angle φ, with gains gd and gi, respectively (dashed lines). A leaking integrator with 
large time constant τ i is used to obtain φ from θ. 
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stiffness Kj and the joint damping Bj. The spring and damper are a simplified 
representation of the visco-elastic joint properties composed of passive, 
active (e.g. monosynaptic stretch reflex in humans or state-feedback in 
robotics) and gravity components. Actuation is provided by muscles in human 
movement and is motorized in robotics. In this study actuation and efferent 
feedback gains are lumped together into a single actuation gain ka, linearly 
translating the level of excitation eCPG=(yF -yE) to a moment of force Ma. It is 
noted that the applied moment of force Ma in Fig. 1 and Eq. A.2 only 
represents the moment of force originating from the CPG, because possible 
local feedback is already included in the mass-spring-damper model. If local 
feedback is used to change the visco-elastic joint properties, the actuator 
actually delivers additional moment of force. This moment of force is not 
explicit in this lumped model. The equations of the complete model are found 
in App. A. 

2.1 Finding periodic solutions 

Two methods are used to analyze the rhythmical limb movements. The first is 
an approximating method, used for physical insight in the model and 
prediction of its behavior. It is called Describing Function Analysis (DFA) and 
is based on frequency response methods used in linear control engineering. 
The second method is bifurcation analysis and is used to obtain periodic 
solutions and their stability, mainly to verify the approximate solutions 
obtained by DFA and to determine the limits of the DFA approach. 
 
DFA can be used to approximately analyze and predict behavior of certain 
nonlinear systems (Slotine and Li 1991). The method can be applied to the 
non-linear CPG model, discussed in Sect. 2.2, because it entrains to the 
input; the fundamental frequency of the input and the output are the same. 
The higher harmonics, which are present in the CPG’s output, are small in 
amplitude compared to the amplitude at the fundamental frequency (see Fig. 
5). Moreover, the limb dynamics act as low-pass filter, which makes the limb 
angle an almost perfect sine wave. The method starts with the construction 
of Bode plots of the input-output relation of the CPG by introducing sinusoidal 
waves with different frequencies at the CPG’s input. The single frequency 
Fourier transformation of the input and output is taken and the magnitude 
and phase between them is determined (Williamson 1998). The magnitude – 
and thus the gain plots of the CPG – depends strongly on the input amplitude 
(see Figs. 3, 4, 6 and 8), because of the non-linear characteristics of the CPG 
model (i.e. the ‘max’ operators in Eqs. 3, 4, 9 and 10). Bode plots are 
calculated for different input amplitudes, since the CPG’s input is the limb 
angle θ (Fig. 1). These Bode plots represent the dynamics of the CPG at 
rhythmical limb movements with different angular amplitudes A rad.  
When the limb is coupled to the CPG, steady state periodic solutions are 
expected under two necessary conditions. Firstly, since the CPG and limb are 
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tightly coupled, the phase difference between the input θ and output eCPG of 
the CPG equals the phase difference between the output θ and input eCPG of 
the limb (Williamson 1998): 
 

( )( )
( )

( )( ) ( )( )

CPG
limb

CPG limb

1
arg arg , or

arg arg

H j
H j

H j H j

ω
ω

ω ω

 
=   

 

= −

 (1) 

 
Secondly, a steady state periodic solution will neither grow nor shrink, so its 
loop gain equals 1. Thus, the magnitude of the CPG’s transfer function HCPG 
has to equal the inverse of the magnitude of the limb’s transfer function 
Hlimb: 
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By fulfillment of these two conditions, it is expected that DFA will provide 
good predictions of steady state periodic solutions for the considered type of 
models (Fig. 1). The obtained physical insight will be used to improve the 
resonance tuning behavior of the CPG (Sect. 3). It is noted that DFA does not 
provide knowledge about the transient behavior of the model. 
 
The second method is bifurcation analysis. DDE-Biftool is used for the 
numerical bifurcation analysis (Engelborghs et al. 2001). This Matlab package 
can handle delay differential equations and is used in this study for the 
continuation of the periodic solutions and the assessment of their stability. 
The procedure to obtain periodic solutions is the same as in Ch. 2 
(Verdaasdonk et al. 2004). Firstly a Hopf bifurcation of the equilibrium, about 
which the oscillation is expected, is located. This is done by parameter 
variation until a pair of eigenvalues cross the imaginary axis with non-zero 
speed. A periodic solution is obtained from this Hopf bifurcation and a branch 
of periodic solutions is followed in parameter space. The stability of the 
periodic solutions in terms of their Floquet multipliers is also calculated. 
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2.2 CPG model 

Central patterns generators (CPGs) are neural networks on spinal level, which 
produce alternating bursts of motor activity, even in a completely isolated 
spinal cord (Nishimaru and Kudo 2000; Sqalli-Houssaini et al. 1993). Cat 
studies (for reviews see Barbeau et al. 1999; Burke 2001; McCrea 2001; Van 
de Crommert et al. 1998; Whelan 1996) suggest that at least afferent 
feedback from Ia and II fibers to the flexor and extensor centers are present. 
In our model this feedback is abstracted to feedback of limb angle θ and 
angular velocity ω. 
 
The CPG model used in this study consists of a half-center model and its 
afferent feedback, including the time delay in the loop (lower block in Fig. 1). 
Two types of the CPG model are used to investigate the influence of the 
different types of afferent input. The P-type CPG only has Proportional 
feedback of the limb angle (solid lines in Fig. 1); the PID-type has additional 
feedback of the angular velocity (or Derivative of the angle) and the ‘Integral’ 
of the limb angle to the half-center model (dashed lines in Fig. 1). The 
integral feedback is modeled as an internal process of the CPG. A time delay 
τc is present in the coupling of the limb with the half-center model. 
 
The half-center model used in this section is similar to that of Matsuoka 
(1985; 1987) and is shown in Fig. 2. It consists of two neurons, which 
receive tonic input u0 from the supra-spinal level, possess adaptation 
dynamics (shown by dashed paths) and inhibit each other (i.e. reciprocal 
inhibition). Sensory inputs to the neurons, sF and sE, are also shown. These 
inputs are used to couple the half-center model to the limb dynamics. 
Maximal robustness is achieved by taking the sensory inputs strictly 
inhibitory, because then they cannot enlarge the maximal CPG output (i.e. 
limb cannot swing out of bounds): 
 

( ) ( ) ( )( )F p c d c i cmax 0,s g t g t g tθ τ ω τ ϕ τ= − + − + −  (3) 

( ) ( ) ( )( )E p c d c i cmax 0,s g t g t g tθ τ ω τ ϕ τ= − − − − − −  (4) 

 
in which θ(t-τc) is the delayed limb angle, ω(t-τc) the delayed angular velocity 
and φ(t-τc) the ‘integral’ of the delayed limb angle, which are fed to the half-
center model by the afferent gains gp, gd and gi respectively. For the P-type 
CPG the afferent feedback gains gd and gi are zero. The outputs of the 
neurons are yF and yE. The inputs and outputs signals represent impulse and 
firing rates, respectively. 
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Without the sensory inputs the CPG model is equal to Matsuoka’s and acts as 
a kind of relaxation oscillator. Both neurons receive supra-spinal tonic input 
u0. However, the reciprocal inhibition between the neurons makes sure that 
only one neuron can fire at a time. The activity of the firing neuron goes 
down after a while, because of the adaptation dynamics. The other neuron 
then starts firing, because it is no longer inhibited and so on. Matsuoka 
(1985; 1987) gave necessary and sufficient conditions for the parameters to 
sustain oscillatory activity of the neurons. 
 
The equations of the half-center model – including sensory inputs – are 
(adapted from Matsuoka (1985; 1987)): 
 

r F 0 F F E Fu u u v wy sτ β= − − − −�  (5) 

a F F Fv y vτ = −�  (6) 

r E 0 E E F Eu u u v wy sτ β= − − − −�  (7) 

u0

sF

sE

yF

yE

excitatory
inhibitory

F

E

 
 
Fig. 2 Half-center model. The inputs to the neurons are the supra-spinal input u0 and
the sensory inputs sF and sE. The outputs are the firing rates yF and yE. Adaptation 
dynamics are shown by dashed lines, because it is an internal process instead of a
pathway. The neuron ’F’ represents the flexor center and the neuron ’E’ the extensor 
center. 
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a E E Ev y vτ = −�  (8) 

 

( )F Fmax 0,y u=  (9) 

( )E Emax 0,y u=  (10) 

 
The state variables of the model are ui and vi, where the former is related to 
the output yi and the latter to the adaptation dynamics of neuron i (i={E, 
F}). The constant τr specifies the rise time when given a step input. The 
strength of reciprocal inhibition is specified by w. The constant τa determines 
the time lag of the adaptation effect and β its strength. The half-center model 
of the CPG has the following parameter values: β=2.0; w=2.0; u0=1.0; 
τr=0.1; τa=0.2. The endogenous frequency ωCPG of the CPG (i.e. the 
frequency without sensory input) is 7.0 rad/s at these parameter settings. 
Changing the endogenous frequency ωCPG shifts the range of input 
frequencies to which the CPG entrains. 
The way the half-center model of the CPG entrains to high and low frequency 
inputs (sF and sE) can be seen from Eqs. 5 through 10. For input frequencies 
much higher than the endogenous frequency of the CPG, the input dominates 
the relatively slow adaptation dynamics. The firing neuron is being inhibited 
by its input before the adaptations dynamics kicks in and, therefore, shortens 
the time the neuron is active. Hence, the cycle time is shortened to equal the 
input period. For frequencies much lower than the endogenous frequency of 
the CPG, the non-firing neuron is inhibited by its input. Although the 
adaptation dynamics of the firing neuron has already set in, it can keep firing 
– with lower rate however – until the input stops inhibiting the non-firing 
neuron. In other words, the reciprocal inhibition is being slowed down by the 
slow input. Hence, the cycle time is lengthened to equal the input period. The 
larger the difference between the input frequency and the endogenous 
frequency, the larger the necessary input amplitude to accomplish 
entrainment (Williamson 1998); if the difference is too large, no entrainment 
can occur. 
 
The neurons of the half-center model represent in fact groups of neurons. 
One group of neurons, often called the flexor center, provides alternating 
bursts of activity to the flexor motoneurons. The other group of neurons is 
called the extensor center. Half-center models are based on the work of 
Brown (1911; 1914). They are considered by most researchers as conceptual 
rather than realistic models. Nevertheless, Cheng et al. (1998) identified 
flexor and extensor centers for walking in the mudpuppy and their model, 
based on their findings, looks similar to the one used here. 
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3. Resonance tuning in rhythmic limb 

movements 

In this section rhythmic limb movement resulting from the coupling between 
a limb and a CPG model is discussed, with the focus on energy efficiency. The 
most energy efficient control of rhythmic movement of a system is actuating 
it in its resonance frequency. The ability of the CPG to control a limb in its 
resonance frequency automatically is termed resonance tuning. Resonance 
tuning has advantages compared to ‘normal’ control strategies, such as feed-
forward and feedback. Firstly, there is no need for a reference control input. 
The only input the CPG requires to entrain to the limb is feedback of one or 
several mechanical state variables (e.g. limb angle). The CPG can also 
entrain to feedback of force or torque (Williamson 1998), but in this paper we 
confine ourselves to state feedback. Secondly, resonance tuning guarantees 
energy efficient movement, because the limb is actuated close to its natural 
frequency. Thirdly, the CPG adapts to changes in limb dynamics. The latter is 
closely related to the second advantage and is used to control the frequency 
of the movement by changing the joint stiffness of the limb. In this paper 
joint stiffness is defined as the linearization of exerted moment of force on 
the limb (not coupled to CPG) about angular displacement in its equilibrium 
at zero frequency (i.e. time�∞). The stiffness can be changed by local 
positional feedback, which changes the natural frequency of the limb. It is 
noted, that humans are also able to change the joint stiffness by co-
contraction, but this is very energy consuming and probably only used when 
necessary. The CPG will adapt to the changed natural frequency such that the 
movement frequency is close to it. Although the movement at this changed 
frequency will be the most energy efficient way of moving the limb at that 
particular frequency, it will of course cost more energy than moving the limb 
at the mechanical natural frequency (i.e. without local feedback). The 
property of the CPG to adapt to changing limb dynamics brings forth great 
flexibility. The same CPG can be used to control different types of limbs or 
limbs that have interaction with the environment (e.g. picking up a mass); all 
are controlled automatically in the most energy efficient way. 
 
The energy efficient and adaptive limb control of the CPG, that is its 
resonance tuning capabilities, is shown for different types of afferent 
feedback in the next subsections. Firstly, in Sect. 3.1, only feedback of the 
limb angle to the half-center model is considered. The CPG with this 
configuration is termed P-type CPG (Sect. 2.2). The solutions predicted by 
DFA are compared to the exact periodic solutions obtained from bifurcation 
analysis to evaluate the validness of DFA. In Sect. 3.2, the negative influence 
is shown that time delay in the afferent feedback to the half-center model 
has on the resonance tuning behavior of the CPG. In Sect. 3.3, it is 
determined which afferent information the half-center model should receive 
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to improve its resonance tuning capabilities and the local stability of the 
coupled system. This is performed with the help of DFA, among others by 
compensation of time delay. 

3.1 Rhythmic limb movement with the P-type CPG 

The afferent feedback of the P-type CPG only consists of proportional 
feedback of the angle θ to the half-center model with gain gp. To predict 
periodic solutions with DFA, first a Bode plot of the CPG is constructed. The 
Bode plot is subsequently used to predict periodic solutions for limbs with 
varying natural frequencies, when coupled to this CPG. Note that no delay is 
present in the system in this subsection (τc=0 ms). 

Bode plot of the P-type CPG 

In Fig. 3 Bode plots of the CPG are shown for five different input amplitudes. 
The angular amplitudes shown in the figure are 0.05, 0.1, 0.2, 0.4 and 0.8 
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Fig. 3 Bode plots of the input-output relation of the P-type CPG model (i.e. only 
proportional feedback of limb angle) without delay for five different input amplitudes, 
namely 0.05, 0.1, 0.2, 0.4 and 0.8 rad. Larger input amplitudes A give lower gains, as 
shown by the arrow. The phase does not change much with input amplitude. Dashed 
lines in the lower graph mark 90 and 180°. The phase is about 90° for frequencies 
above the endogenous frequency of the CPG (ωCPG=7.0 rad/s, shown by the vertical 
line), which yields resonance tuning (see text for details). 
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rad respectively. They are transferred to the half-center model via a gain gp 
of 15. The Bode plots are determined with the DFA method described in Sect. 
2.1. The resonance tuning behavior of the CPG can be seen from the phase 
plots, while the robustness of the CPG – regarding entrainment of different 
types of limbs – can be seen from the gain plots (explained below). 
 
The phase plots, corresponding to different angular amplitudes (Fig. 3, lower 
graph), are similar for the different input amplitudes. At lower input 
frequencies than the endogenous frequency of the CPG, the phase lead goes 
up to about 180° (in fact a lag of -180°); at higher input frequencies the 
phase lead goes down to about 90° (in fact a lag of -270°). This difference in 
phase lead corresponds to the qualitatively different way the half-center 
model entrains to high and low frequency input (see Sect. 2.2). The limb, 
which is modeled as second order mass-spring-damper model, has a phase 
lag of 90° at its natural frequency. Since the phase of the CPG must match 
the phase of the inverse transfer function of the limb for a periodic solution to 
exist (Eq. 1, Sect. 2.1), we expect resonance tuning to occur only for limbs 
with resonance frequencies higher than the endogenous frequency of the 
CPG.  
The gain plot of the inverse transfer function of the limb has to cross one of 
the CPG gain plots (Fig. 3, upper graph) at the same frequency for which the 
phase match occurs (Eq. 2, Sect. 2.1). The large spread in the gain plots 
indicates that many different types of limbs can be entrained by the CPG and 
shows the CPG’s robustness for changing limb dynamics. At low and medium 
frequencies, the gain plots decrease 6 dB for each doubling of input 
amplitude, because the maximum output amplitude of the CPG is constant in 
case of inhibiting sensory inputs. If these inputs are both high frequency and 
high amplitude, this maximum output amplitude is not reached and thus the 
gain will drop dramatically (see the lower gain plot in Fig. 3, corresponding to 
an angular amplitude of 0.8 rad).  

Coupling the limb to the CPG 

A limb with a moment of inertia I of 1.0 kgm2 and a joint damping Bj of 1.0 
Nms/rad is now coupled to the P-type CPG. The stiffness of the limb joint Kj 

is varied to vary the limb’s natural frequency and predictions of the entrained 
rhythmic limb movement are made at these different natural frequencies. A 
periodic solution is predicted when the inverse transfer function of the limb 
crosses one of the CPG Bode plots at a certain frequency ωe for both phase 
and gain (Sect. 2.1), giving rise to a stable rhythmic limb movement with 
frequency ωe and an amplitude specified by the crossed Bode plot. The gain 
ka – representing the efferent feedback and actuation – is chosen 2.0 in order 
to ensure the crossing of the inverse transfer function with one of the Bode 
plots. 
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An example of the prediction of the frequency and amplitude of entrained 
rhythmic limb movement for a limb with a natural frequency of 8.0 rad/s is 
shown in Fig. 4.  
In the figure Bode plots are shown for input angles of 0.05, 01 and 0.2 rad, 
respectively. The inverse transfer function of the limb is shown in gray. The 
intersection of the inverse transfer function with one of the Bode plots of the 
CPG – simultaneously for both gain and phase – is close to the Bode plot 
associated with 0.1 rad angular amplitude. In fact, DFA predicts the 
frequency and amplitude of the entrained periodic solution to be 8.55 rad/s 
and 9.2·10-2 rad, respectively. This is done by calculating the Bode plots for 
many input amplitudes and interpolate between them to obtain a prediction 
of the periodic solution at the intersection. The time series and power 
spectral density of the actual entrained periodic movement is shown in Fig. 5. 
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Fig. 4 Prediction of frequency and amplitude of periodic solutions. Bode plots of input-
output relation of P-type CPG model for three input amplitudes A (0.05, 0.1, 0.2) are 
shown in black. Bode plot of inverse transfer function of the limb is shown in gray. The 
gain and phase of one of the Bode plots of the CPG has to cross simultaneously with 
the gain and phase of the Bode plot of the inverse transfer function (Sect. 2.1). These 
conditions are true only for a specific frequency ωe and a specific CPG Bode plot, 
representing the amplitude of the periodic solution. In this case, the natural frequency 
of the limb was chosen to be 8.0 rad/s and the prediction of the frequency and 
amplitude of the entrained periodic solution is 8.55 rad/s and 9.2·10-2 rad, 
respectively. 
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The periodic movement has a frequency of 8.59 rad/s and an amplitude of 
9.26·10-2 rad, which is close to the values predicted by DFA. 

Given the half-center model and the mechanical limb parameters (i.e. I, Bj, 
Kj), DFA predicts that periodic limb movement is possible within a certain 
range of movement amplitudes. Part of this of this range is shown in the gain 
plot of Fig. 3; the arrow indicates increasing amplitude A. The range of 
movement amplitudes at which entrainment occurs can be adjusted by the 
sensory feedback gain gp, while the amplitude itself is adjusted by the 
actuation gain ka. Increasing ka decreases the gain of the inverse transfer 
function of the limb, which gives rhythmical limb movement with larger 
amplitude (see Fig. 4). Increasing or decreasing gp will hardly change the 
gain of the CPG’s Bode plots, because the output amplitude of the CPG‘s 
flexor and extensor center is almost independent of their input amplitude 
within a certain range of input amplitudes. If the input amplitude is too small, 
the CPG will not entrain to the limb dynamics (Williamson 1998); if the input 
amplitude is too large, the CPG’s output amplitude will drop, especially at 
high frequencies (see Fig. 3). Halving of the sensory feedback gain gp 
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Fig. 5 Entrained periodic solution corresponding to the prediction of Fig. 4. Time series 
and power spectral density (PSD) plots of the CPG output eCPG and the limb angle θ are 
shown. Higher harmonics that are present in eCPG are filtered out by the limb’s inertia. 
This way, almost perfect sinusoidal limb movement is obtained, with a frequency of 
8.59 rad/s and an amplitude of 9.26·10-2 rad. 
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doubles minimum and maximum possible movement amplitudes over the 
entire range of entrained natural limb frequencies.  
 
Figure 6 shows both the predicted and exact entrained periodic solutions for 
limbs with a natural frequency ωn of 1 up to and including 20 rad/s. This 
varying natural frequency is obtained by changing the joint stiffness of the 
limb. The upper graph shows the entrained frequency ωe of the periodic 
movement, while the lower graph shows the corresponding angular amplitude 
A. 
In the upper graph of Fig. 6 the predicted and exact entrained frequencies ωe 
are shown in black and gray, respectively. In the lower graph the 
accompanying angular amplitudes of the rhythmic movements are shown. 
The dashed line in the upper graph, for which the entrained frequency equals 
the natural frequency of the limb, shows ideal resonance tuning behavior. 
The figure shows that resonance tuning only occurs for limbs with a natural 
frequency higher than the endogenous frequency of the CPG, as was already 
expected from Fig. 3. The entrained frequency has an asymptote of 5.54 
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Fig. 6 Stable periodic solutions for the limb coupled to the P-type CPG, without time 
delay in the afferent path. The upper graph shows the natural frequency of the limb 
dynamics ωn versus the entrained frequency ωe. The lower graph shows the 
accompanying angular amplitudes A. Predictions by DFA are shown in black; exact 
solutions are shown in gray. Ideal resonance tuning (ωe=ωn) is shown by the dashed 
line and is approached for limbs with natural frequencies above the endogenous 
frequency of the CPG (ωCPG=7.0 rad/s). 
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rad/s for decreasing joint stiffness (Kj�0 Nm/rad). The value of this 
asymptote depends on the coupling strength, but always lies between the 
endogenous frequency of the CPG ωCPG and the natural frequency of the limb 
ωn. 
The predictions of entrained periodic limb movements with frequencies 
around and above the endogenous CPG frequency are nearly identical to the 
exact solutions. However, for limbs with natural frequencies ωn higher than 
17.34 rad/s the exact solutions show co-existing periodic solutions, which 
cannot be predicted by DFA. In fact, bi-stability is already observed at a ωn of 
17.09 rad/s (see App. B). Bi-stable solutions are undesirable for most 
applications, because switching between periodic solutions can occur in case 
of perturbations or changing conditions and so the behavior of the system 
becomes less predictable. Moreover, the transient behavior is worsened by 
the influence of the co-existing stable and unstable solutions. More 
information on the stability of the co-existing periodic solutions can be found 
in App. B. 
 
Periodic limb movements with frequencies below the endogenous CPG 
frequency are entrained by inhibition of the non-firing neuron (see Sect. 2.2); 
the firing neuron keeps on firing until the input stops inhibiting the non-firing 
neuron. This causes the CPG output to resemble a square wave at low 
frequencies. Thus, at low frequencies, the CPG output contains more higher 
harmonics and this causes the predicted entrained periodic limb movements 
to deviate slightly from the exact solutions, especially in amplitude. DFA 
cannot find solutions for limbs with a natural frequency below 2.5 rad/s, 
because the phase lead of the CPG is more than 180° at these frequencies. 
Hence, intersection of the Bode plots with the inverse transfer function of the 
limb is not possible (the phase of the latter only goes from 0 to 180°). 

3.2 Influence of time delay in the coupling loop 

In Ch. 2, we showed that time delays endanger the stability of human stance 
(Verdaasdonk et al. 2004). In this section, the influence of a time delay on 
resonance tuning and the stability of periodic solutions is discussed. In Fig. 7, 
Bode plots of the CPG – representing the input-output relation – are plotted 
for different input amplitudes. The difference with Sect. 3.1 is a time delay of 
50 ms in the feedback loop from limb angle to CPG (τc=50 ms).  Comparison 
of Fig. 7 with Fig. 3 (without time delay) shows that the gain plots do not 
change. However, the phase plots show an extra phase lag increasing 
proportional with frequency, which agrees with the transfer function Hτ of a 
time delay τ (Hτ=e-jωτ). In other words, the time delay decreases the 
bandwidth for which the phase lead is around 90° and resonance tuning is 
expected only for limbs with natural frequencies around 10 rad/s. 
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Fig. 7 Influence of 50 ms time delay τc on the Bode plots of the P-type CPG model for 
different input amplitudes (compare to Fig. 3). The phase continues to decrease and is 
about 90° around 10 rad/s. Therefore, the CPG is expected to only have resonance 
tuning capabilities when coupled to limbs with natural frequencies around 10 rad/s. 
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Fig. 8 Influence of time delay τc on the entrained periodic solutions (compare to Fig. 
6). Time delay decreases the maximal natural limb frequency for which entrainment 
occurs (14.46 rad/s). It also causes bi-stability to occur at lower natural limb 
frequencies (12.39 – 14.46 rad/s), shown by the exact periodic solutions in solid gray. 
Bi-stability cannot be predicted by DFA (black solid line). 
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The upper graph of Fig. 8 shows the predicted and exact entrained 
frequencies ωe in black and gray, respectively. In the lower graph the 
accompanying angular amplitudes of the rhythmic movements are shown. 
Resonance tuning only takes place for limbs with natural frequencies ωn 
around 10 rad/s, as was expected from the phase plots (Fig. 7). 
Simultaneous intersections of the gain and phase plots of the CPG with the 
inverse transfer function of the limb are found with DFA for natural limb 
frequencies up to 14.0 rad/s. Beyond that, the frequencies at which 
intersection of the phase plots occurs differ from those of the gain plots for 
all input amplitudes (i.e. all Bode plots of the CPG). The reason is that the 
gain plot of the inverse transfer function of limbs with high natural frequency 
(i.e. large Kj) can only intersect low-input CPG gain plots, because the 
minimal gain of the inverse transfer function increases with joint stiffness. 
Thus, intersection of the gain plots can only occur at frequencies close to the 
natural frequency of the limb. However, the phase plots cannot intersect at 
these frequencies, because the time delay rendered the phase lead of the 
CPG well below 90° at these high frequencies.  
Periodic solutions are also predicted for low natural frequencies, because the 
time delay adds just enough phase lag to ensure simultaneous intersection of 
phase and gain plots of the inverse transfer function with the CPG Bode plots 
(i.e. the phase plot of the CPG stays below 180°). The extra phase lag 
introduced by the time delay, also lowers the asymptote of the entrained 
frequency to 3.52 rad/s (for K�0 Nm/rad). Thus, for limbs with low natural 
frequency the time delay causes the CPG to entrain the limb at a frequency 
closer to its natural frequency. However, this has nothing to do with 
resonance tuning. It is noted that the lower asymptote of the entrained 
frequency causes larger deviation between the predicted and exact periodic 
solutions for low natural limb frequencies compared to feedback without time 
delay (see Fig. 6), because a lower entrained frequency means more higher 
harmonics in the CPG output (see Sect. 3.1). 
 
The time delay lowers the highest natural frequency up to which a single 
periodic solution exists from 17.09 to 12.39 rad/s. Comparison of Fig. 8 with 
Fig. 6 shows clearly that time delay increases the region of co-existing 
periodic solutions at high natural limb frequencies (for details, see App. B). In 
conclusion, time delays narrow the bandwidth of natural limb frequencies for 
which resonance tuning with the P-type CPG is possible and give rise to bi-
stability in limbs with high natural frequencies. 

3.3 Improved resonance tuning with the PID-type CPG 

The two previous subsections showed two problems concerning resonance 
tuning with the P-type CPG. Firstly, the entrained frequency is far from the 
natural limb frequency at low natural limb frequencies: the control of the CPG 
does not come close to resonance tuning at low natural frequencies. 
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Secondly, time delays enlarge the bandwidth at which multiple stable periodic 
solutions exist, at the expense of the usable bandwidth at which single stable 
periodic solutions are entrained by resonance tuning. A robust solution to 
these problems can be found by looking at the Bode plots of the CPG (Figs. 3 
and 7). Ideal resonance tuning occurs when the phase lead of the CPG is 90° 
for all considered frequencies (Sect. 3.1); each limb is then actuated at –90°, 
so in its natural frequency. The phase plots of the CPG – not considering time 
delay – show a phase lead of about 180° at low frequencies and about 90° at 
high frequencies, with the endogenous frequency of the CPG being the 
transition point. Thus, a straightforward solution is to replace the proportional 
feedback gain gp of the P-type CPG by a proportional-integral controller HPI 
with the zero at the endogenous frequency of the CPG:  
 

( )p CPG
PI

g s
H

s

ω+
=  (11) 

 
This PI controller gives a phase lag of 90° at low frequencies, but leaves 
higher frequencies untouched.  In our model this is implemented by giving 
the feedback gain gi in Eqs. 3 and 4 a value of gpωCPG. It is noted that the 
limb angle is integrated by a leaking integrator with a pole at –1/3 rad/s 
instead of an ideal one to avoid drift (see Fig. 1 and Eq. 19).  
 
Figure 7 shows that the phase of the CPG falls well below 90° for high 
frequencies, because of the presence of time delay in the afferent feedback 
path. Derivative control (i.e. velocity feedback) is necessary to obtain 
resonance tuning for high natural limb frequencies, because it compensates 
for the phase lag caused by time delay τc. The necessary gain of the 
derivative control is gd=gpcτ, in which cτ depends on the amount of time 
delay in the loop. In the case of τc=50 ms, the constant cτ is 8.0·10-2, which 
gives a gain gd of 1.2 in Eqs. 3 and 4. Only a rough estimate of the time 
delay is necessary; a gain gd of 1.0 or 1.4 also renders good results.  
 
The CPG with additional integral and derivative afferent feedback is termed 
PID-type CPG (Sect. 2.2). In terms of control engineering, the proportional 
feedback gain gp in the P-type CPG is replaced by the PID-controller HPID in 
the PID-type CPG:  
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In applications, poles can be added at high frequencies (>>20 rad/s) without 
significantly changing the performance of the coupled system. This makes Eq. 
12 a proper transfer function (i.e. more or equal number of poles compared 
to the number of zeros) and filters out high frequency noise. 
 
Figure 9 shows the Bode plots of the PID-type CPG with a time delay of 50 
ms in the feedback path. The phase plots show a phase lead close to 90° at 
all frequencies, while the gain plots only change slightly at high frequencies. 
At low frequencies the phase lead is slightly larger than 90°, because of the 
leaking integrator with its pole on –1/3 rad/s. Thus, good resonance tuning 
behavior of the PID-type CPG is expected for all considered natural limb 
frequencies and this is confirmed by Fig. 10. The integral control attributes to 
resonance tuning for frequencies lower than and around the endogenous CPG 
frequency. The derivative control gives resonance tuning for limbs with high 
natural frequency and pushes the region of co-existing stable solutions 
outside the range of considered limb frequencies; this region has become 
much smaller and exists for 20.7 up to about 22.2 rad/s (see App. B). 
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Fig. 9 Bode plots of the input-output relation of the PID-type CPG model with time 
delay τc =50 ms for different input amplitudes (compare to Fig. 7). Feedback of the 
integral of the limb angle to the half-center model gives 90° phase lag for low 
frequencies and velocity feedback compensates for the phase lag caused by time delay. 
This way a phase around 90° is achieved for all frequencies, which gives good 
resonance tuning behavior for all considered natural limb frequencies (see Fig. 10). 
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Fig. 10 Resonance tuning by the PID-type CPG is almost ideal (ωe=ωn, dashed line) for 
all considered natural limb frequencies. Approximations by DFA (black solid line) and 
exact solutions (gray solid line) agree very well. No bi-stability of stable periodic 
solutions is present in the considered bandwidth of natural limb frequencies. 
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Fig. 11 Local stability of the system when the limb is coupled to the P-type CPG (black
line) and the PID-type CPG (gray line). The non-trivial Floquet multiplier with the 
largest magnitude λmax is plotted against the natural limb frequency ωn. The time delay 
τc in the afferent path is 50 ms in both cases. 
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The predicted and exact entrained frequencies are nearly identical. In the 
accompanying amplitudes is a slight discrepancy at low frequencies, because 
the CPG output contains more higher harmonics at these frequencies. The 
deviation between predicted and exact periodic solutions is much less than 
for the P-type CPG, because integral control gives a much tighter coupling 
between the limb and the CPG at low frequency limb movements.  
This tight coupling also has a positive effect on the local stability of the 
periodic solutions, quantified by the largest non-trivial Floquet multiplier (see 
Fig. 11).  The Floquet multipliers are the eigenvalues of the mapping from 
cycle to cycle, termed Poincaré map (Kuznetsov 1998 pp 25-31). The Floquet 
multiplier with the largest magnitude, apart from the trivial one, is dominant 
and is an indication of the decay of small perturbations; lower values indicate 
faster decay from cycle to cycle. The largest non-trivial Floquet multiplier of a 
stable periodic solution has a magnitude smaller than one. Figure 11 shows 
the largest non-trivial Floquet multiplier for the P-type as well as for the PID-
type CPG. The figure clearly shows a much faster decay of perturbations for 
the PID-type CPG compared to the P-type, especially for limbs with low 
natural frequency; this is due to the integral control. The derivative control 
stabilizes entrainment of limbs with high natural frequency by pushing the 
region of co-existing stable solutions towards higher natural limb frequencies.  
 
This section has discussed the concept of resonance tuning for a limb coupled 
to a CPG. The CPG entrains to the limb if the gain and phase plot of the 
inverse transfer function of the limb cross the gain and phase plot of one of 
the Bode plots of the CPG. The amplitude of the entrained limb movement is 
adjusted by the efferent strength (i.e. ka), while the range of possible 
movement amplitudes can be adjusted by the strength of afferent feedback 
(i.e. gp). The large spread in the gain plots of the CPG provides large 
robustness against changing limb dynamics. Whether the entrained 
movement is energy efficient depends on the type of afferent feedback to the 
half-center model. Proportional feedback of the limb angle provides 
resonance tuning above the endogenous frequency of the CPG, integral 
feedback to the half-center model provides resonance tuning at and below 
the endogenous frequency and derivative feedback is necessary to 
compensate for the time delay τc in the loop that couples limb to CPG. 
Without derivative feedback bi-stability occurs and resonance tuning is not 
possible at high movement frequencies. 
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4. Discussion 

This study has shown that tight local coupling of CPGs to limbs provides 
robust and energy efficient rhythmic movement. Stable rhythmic limb 
movement can be accomplished for a broad range of natural limb 
frequencies. The amplitude of the entrained limb movement is adjusted by 
the strength of efferent feedback, while the range of possible movement 
amplitudes can be adjusted by the strength of afferent feedback. The 
entrained frequency is adjusted by modulation of the joint stiffness. 

4.1 Summary of results 

Bode plots of the input-output behavior of the CPG were constructed at 
different angular amplitudes with the help of Describing Function Analysis. 
The large spread in the gain plots of the CPG (Figs. 3, 7 and 9) shows the 
robustness against changes in limb parameters. Feedback of different types 
of afferent information proved crucial in providing energy efficiency in terms 
of resonance tuning. This feedback shapes the phase plots (Fig. 9) of the 
CPG, such that resonance tuning is achieved for a large bandwidth of 
resonance frequencies of the limb (Fig. 10) and local stability is improved 
(Fig. 11). Proportional feedback of positional information – such as limb angle 
or muscle length – provides resonance tuning above the endogenous 
frequency of the CPG (Fig. 6). Integral feedback to the half-center model 
provides resonance tuning at and below the endogenous frequency.  
Feedback of velocity information, i.e. derivative feedback, is necessary to 
compensate for the time delay τc in the loop which couples limb to CPG; 
without velocity feedback bi-stability occurs (App. B) and resonance tuning is 
not possible at high movement frequencies (Fig. 8). 

4.2 Application to robotics 

Describing Function Analysis (DFA) predicts the periodic solutions of the 
coupled system well (Figs. 6, 8 and 10). It is therefore a useful ‘engineering’ 
tool, which renders fast development of robust and flexible controllers used 
to achieve energy efficient rhythmic arm movements in robotics with the 
desired frequency and amplitude. The movement frequency can be adjusted 
by changing the limb’s resonance frequency (e.g. by local positional 
feedback); the CPG will subsequently entrain to the new resonance frequency 
of the limb. The amplitude can be adjusted by the efferent or actuation gain 
(e.g. by a pre-amplifier). 
Williamson (1998) performed DFA on robot arms coupled to the same half-
center model (Matsuoka 1985; Matsuoka 1987) as used in this study. The 
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DFA in this study is inspired by Williamson’s work. However, Williamson did 
not investigate integral and derivative feedback to the half-center model. 

4.3 Conclusion 

In this study we investigated the roles of CPGs, afferent feedback and 
modulation of joint stiffness in providing energy efficient and robust rhythmic 
limb movement for a simple mathematical model of rhythmic limb 
movement. The most important finding of this study is that the type of 
afferent feedback to the half-center model is crucial in providing energy 
efficiency by means of resonance tuning.  
Resonance tuning by afferent feedback to the CPG was also performed in the 
studies of Hatsopoulos (1996) and Williamson (1998). However, they only 
considered proportional feedback of the limb angle and could therefore only 
tune into resonance frequencies of the limb, which lie above the endogenous 
frequency of the CPG. They also did not consider time delays. 
Most studies on CPG-controlled legged locomotion focus on the CPG itself and 
do not consider the interaction with the limb dynamics and environment at all 
(e.g.Golubitsky et al. 1998, 1999; Zielinska 1996). Taga (1995a) and Taga et 
al. (1991) did show that mutual entrainment of CPGs with the musculo-
skeletal system and its environment creates stable gait which is quite robust 
(Taga 1995b). However, they did not consider energy efficiency. 
 
The idea of achieving resonance tuning by shaping the sensory information 
gives insight into the way humans might control rhythmic limb movements. 
In a follow-up study, a neuro-musculo-skeletal model of the human forearm 
is proposed, using both knowledge of resonance tuning gained in this study 
and knowledge of the organization of CPGs from literature. Among others, 
the influence of time delays in the local reflex loop and the robustness 
against force perturbations will be investigated. In future research, the ideas 
of resonance tuning will also be applied to bipedal gait models. 
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Appendix A. Model equations 

The model of rhythmic limb movement consists of a limb coupled to the 
Central Pattern Generator (CPG). The state variables are the limb angle θ and 
angular velocity ω, the state variables of the CPG model uF, vF, uE, vE and the 
‘integral’ of the angle θ, denoted φ. For the latter state variable φ, 
integrating the angle θ is in fact performed by a leaking integrator (pole at –
1/τ i, see Eq. A.7 below) to prevent infinite gain at zero frequency. The state 
variables associated with the flexor center of the CPG are denoted with ‘F’, 
while the state variables associated with the extensor center are denoted 
with ‘E’. Afferent feedback to the half-center model consists of delayed limb 
angle θ(t-τc), angular velocity ω(t-τc) and the the integrated angle φ(t-τc) 
with gains gp, gd and gi, respectively. Note that for the P-type CPG gi and gd 
are taken zero. 
 
The delayed differential equations of the model are: 

θ ω=�   (A.1) 
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ω θ
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− −
=�  (A.2) 

 

( )F 0 F F E F
r

1
u u u v wy sβ

τ
= − − − −�  (A.3) 

 

( )F F F
a

1
v y v

τ
= −�  (A.4) 

 

( )E 0 E E F E
r

1
u u u v wy sβ

τ
= − − − −�  (A.5) 

 

( )E E E
a

1
v y v

τ
= −�  (A.6) 

 

( )i
i

1
ϕ τ θ ϕ

τ
= −�  (A.7) 

 
The moment of force Ma is applied by the actuator, which has gain ka: 

( )a a F EM k y y= −  (A.8) 
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The inputs to the flexor and extensor center of the half-center-model, sF and 
sE respectively, are: 

( ) ( ) ( )( )F p c d c i cmax 0,s g t g t g tθ τ ω τ ϕ τ= − + − + −  (A.9) 

( ) ( ) ( )( )E p c d c i cmax 0,s g t g t g tθ τ ω τ ϕ τ= − − − − − −  (A.10) 

 
The outputs yF and yE of the flexor and extensor centers are: 

( )F Fmax 0,y u=  (A.11) 

( )E Emax 0,y u=  (A.12) 

Limb parameters 

I  = 1.0  kgm2 moment of inertia of the limb about the joint 
Bj  = 1.0  Nms/rad rotational joint damping of limb  
ka  = 2.0  actuator gain between CPG output and applied 
   moment of force Ma  

CPG parameters 

τ i  = 3.0  s time constant for leaking integrator  
   (pole at –1/τ i) 
τr  = 0.1  s rise time constant 
τa  = 0.2  s adaptation time constant 
β  = 2.0  strength adaptation effect  
w  = 2.0  strength of reciprocal inhibition 
u0  = 1.0  tonic input from supra-spinal centers 
cτ  = 0.08  constant associated with velocity feedback 

Variables with default values 

Kj  = 0  Nm/rad rotational joint stiffness of limb 
τc  = 50·10-3  s time delay in feedback loop 
gp  = 15.0  feedback strength of limb angle  
gd  = gpcτ  feedback strength of limb’s angular velocity 
gi  = gpωCPG  feedback strength of ‘integral’ of limb angle  

  with ωCPG the endogenous frequency of the  
  CPG, which is 7.0 rad/s for these CPG  
  parameters 
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Appendix B. Stability of co-existing periodic 

solutions 

In Figs. B.1, B.2 and B.3 the stability of a branch of 1:1 periodic solutions is 
shown for proportional feedback of the angle θ, delayed proportional 
feedback of the angle θ and delayed proportional-integral-derivative feedback 
of the angle θ to the half-center model, respectively. The term 1:1 periodic 
solutions will be used to indicate solutions, which have one oscillation in a 
period for both the output of the CPG and the limb angle θ (i.e. both 
oscillators – the limb and CPG – oscillate at the same frequency). Stable 
solutions are shown by solid lines and unstable solutions by dashed lines. If 
an unstable 1:1 periodic solution is present for a certain ωn, then there is also 
an additional stable solution with low amplitude in terms of the angle θ at 
this ωn. These additional stable solutions, which can be periodic (not 1:1 
though) and quasi-periodic (or have very long periods), are not shown in the 
figures. The additional stable periodic solutions seem to have periods T which 

are close to multiples of the natural limb period Tlimb (Tlimb=2π/ωn) and at the 
same time close to multiples of (slightly less than) the endogenous period of 

the CPG TCPG (TCPG=2π/ωCPG). In other words, the additional solutions will be 
periodic at those natural limb frequencies ωn for which both oscillators – the 
limb and the CPG – are able to move near resonance; if this is not the case, 
they are found to be quasi-periodic.  
 
Figure B.1 shows that the lowest ωn for which an unstable 1:1 periodic 
solution was calculated (before the branch folds back on itself) is 17.34 rad/s. 
However, bi-stability is already observed at a ωn of 17.09 rad/s, so probably 
– also regarding Fig. B.2 – there is at least one other branch of unstable 
periodic solutions, which is not connected (smoothly) to the one showed. For 
a ωn of a 17.09 up to 17.14 rad/s a low-amplitude periodic solution is present 
with a period about 7 times Tlimb (T≈7Tlimb=2.57 s). Beyond that, the solution 
becomes quasi-periodic, but for a ωn of 20 rad/s for example, the solution is 
periodic again with a period of about 14 times Tlimb (T≈14Tlimb=4.40 s). At 
higher ωn the periodic solution becomes 1:1 again (not shown in figure) and 
has a period close to TCPG. 
 
Comparing Fig. B.2 to Fig. B.1, it becomes clear that time delay causes a 
large increase in the region of natural limb frequencies for which bi-stable 
periodic solutions exist, even giving rise to bi-stable 1:1 periodic solutions for 
natural limb frequencies ωn of 12.39 up to 12.46 rad/s.  Additional periodic 
solutions with the smallest multitude of Tlimb were found for a ωn of 12.99 up 
to 13.26 rad/s with a period about 4 times Tlimb (T≈4Tlimb). Other examples of 
additional low-amplitude solutions are: ωn=12.75 with T≈16Tlimb, ωn=12.8 
with T≈10Tlimb, ωn=12.95 with T≈27Tlimb and ωn=13.3 with T≈25Tlimb. Quasi-
periodic solutions are found between these small regions of periodic 
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Fig. B.1 Stability of co-existing 1:1 periodic solutions for the P-type CPG (zoom-in of 
Fig. 6). The solid line shows stable solutions; the dashed line shows unstable solutions. 
On the horizontal axis the natural frequency of the limb dynamics ωn is shown and on 
the vertical axis the entrained frequency ωe is shown. 
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to CPGstable
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Fig. B.2 Zoom-in of Fig. 8. Time delay causes bi-stability of 1:1 periodic solutions for 
lower natural limb frequencies (12.39 – 12.46 rad/s), compared to the case of no time 
delay (Fig. B.1). The solid lines show stable solutions; the dashed lines show unstable 
solutions. On the horizontal axis the natural frequency of the limb dynamics ωn is 
shown and on the vertical axis the entrained frequency ωe is shown. 
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solutions. For natural limb frequencies ωn higher than 16.8 rad/s the branch 
of 1:1 periodic solutions becomes stable again (Fig. B.2) and has a period 
close to TCPG (i.e. the coupled system entrains to the CPG). 
 
Figure B.3 shows that feedback of the angular velocity (D-control) reduces 
the region of natural limb frequencies for which co-existing 1:1 periodic 
solutions exist and pushes this region towards higher natural limb 
frequencies as well. Note however, that bi-stability is already observed at a 
ωn of 20.7 rad/s with a period ≈ 3Tlimb, which slowly transforms into a stable 
1:1 periodic solution with a period close to TCPG at higher ωn (not showed in 
the figure). No quasi-periodic solutions were found. For most applications bi-
stability is unwanted and thus feedback of angular velocity renders a larger 
useful bandwidth (up to 20.7 rad/s) in which only one stable predictable 
solution exists.  

 

ωe

[rad/s]

ωn [rad/s]

entrainment 
to limb

 
 

Fig. B.3 Zoom-in of Fig. 10. The region of co-existing 1:1 periodic solutions has been 
decreased and shifted to higher natural limb frequencies by the velocity feedback to 
the half-center model of the PID-type CPG, despite the time delay in the feedback 
path. The solid line shows stable solutions; the dashed line shows unstable solutions. 
On the horizontal axis the natural frequency of the limb dynamics ωn is shown and on 
the vertical axis the entrained frequency ωe is shown. 
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Abstract 

In rhythmic movements, humans activate their muscles in a robust and 
energy efficient way. These activation patterns are oscillatory and seem to 
originate from neural networks in the spinal cord, called Central Pattern 
Generators (CPGs). Evidence for the existence of CPGs was found for 
instance in lampreys, cats and rats. There are indications that CPGs exist in 
humans as well, but this is not proven yet. Energy efficiency is achieved by 
resonance tuning: the central nervous system is able to tune into the 
resonance frequency of the limb, which is determined by the local reflex 
gains. The goal of this study is to investigate if the existence of a CPG in the 
human spine can explain the resonance tuning behavior, observed in human 
rhythmic limb movement. A neuro-musculo-skeletal model of the forearm is 
proposed, in which a CPG is organized in parallel to the local reflex loop. The 
afferent and efferent connections to the CPG are based on clues about the 
organization of the CPG, found in literature. The model is kept as simple as 
possible (i.e. lumped muscle models, groups of neurons are lumped into half-
centers, simple reflex model), but incorporates enough of the essential 
dynamics to explain behavior – such as resonance tuning – in a qualitative 
way. Resonance tuning is achieved above, at and below the endogenous 
frequency of the CPG in a highly non-linear neuro-musculo-skeletal model. 
Afferent feedback of muscle lengthening to the CPG is necessary to 
accomplish resonance tuning above the endogenous frequency of the CPG, 
while feedback of muscle velocity is necessary to compensate for the phase 
lag, caused by the time delay in the loop coupling the limb to the CPG. This 
afferent feedback of muscle lengthening and velocity represents the Ia and II 
fibers, which – according to literature – are inputs to the CPG. An internal 
process of the CPG, which integrates the delayed muscle lengthening and 
feeds it to the half-center model, provides resonance tuning below the 
endogenous frequency. Increased co-contraction makes higher movement 
frequencies possible. This agrees with studies of rhythmic forearm 
movements, which have shown that co-contraction increases with movement 
frequency. Robustness against force perturbations originates mainly from the 
CPG and the local reflex loop. The CPG delivers an increasing part of the 
necessary muscle activation for increasing perturbation size. As far as we 
know, the proposed neuro-musculo-skeletal model is the first that explains 
the observed resonance tuning in human rhythmic limb movement. 
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1. Introduction 

Locomotion is one of the most obvious oscillatory activities in animal world. 
Walking, swimming and flying are all powered by rhythmic patterns of muscle 
activity. These motor patterns are oscillatory and seem to originate from 
neural networks on spinal level, called Central Pattern Generators (CPGs). 
Evidence for the existence of CPGs was found for instance in lampreys 
(Cohen and Wallen 1980; Grillner et al. 1981), rats (Cazalets et al. 1995; 
Marchetti et al. 2001; Sqalli-Houssaini et al. 1993) and cats (Amemiya and 
Yamaguchi 1984; Brown 1911; Shik et al. 1966). There is a growing number 
of observations suggesting the presence of CPGs in humans as well (reviews 
by Duysens and Van de Crommert 1998; MacKay-Lyons 2002). Although 
there is little direct evidence of CPGs in the human spine, Dimitrijevic (1998) 
induced alternating stance and swing phases in the lower limbs by tonic 
electrical stimulation of the spinal cord. CPGs have also been found to 
contribute to other rhythmic tasks, such as mastication (Nakamura et al. 
1999), respiration (Taylor and Lukowiak 2000) and scratching (Baev et al. 
1991).  
 
Control of rhythmic arm movements by CPGs is investigated only recently, 
because the high number of direct corticospinal projections to the forearm 
muscles made the CPG an unlikely candidate for the control of arm 
movement. However, rhythmic movements are old motor behaviors and for 
these movements far less brain areas are used compared to discrete 
movements such as reaching and grasping (Schaal et al. 2004). Schaal et al. 
showed that for rhythmic movement only a few unilateral primary motor 
areas are used while for discrete movements additional contralateral 
nonprimary motor areas are used and strong bilateral activity is present in 
the cerebrum and cerebellum. Moreover, during rhythmic arm movement 
there seems to be less control from the primary motor cortex, because in 
that case the corticospinal excitability is lower compared to tonic voluntary 
contraction (Carroll et al. 2006). In other words, the control coming from the 
brain is less and simpler for rhythmic movements compared to discrete 
movements, which support the idea that CPGs play a crucial role in the 
control of rhythmic arm movement. Furthermore, reflex studies (Zehr and 
Chua 2000; Zehr et al. 2003; Zehr and Kido 2001) show that during rhythmic 
arm movement the reflex modulation in the (fore)arm muscles is similar to 
the reflex modulation in the leg muscles during rhythmical leg movement 
such as locomotion. They also point out the similarity in subcortical neural 
control for rhythmic movement in humans and animals for which CPGs are 
already discovered. Although there is no direct evidence of the existence of 
CPGs in humans, the archaic brain control during rhythmic arm movements 
together with the evidence of similar neural control in rhythmical arm and leg 
movement and the fact that CPGs are found to contribute to a large variety 
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of rhythmic tasks in all kinds of animals lead us to believe that in humans 
CPGs could play a crucial role in rhythmic arm movement. Several 
experimental studies (Abe and Yamada 2003; Hatsopoulos and Warren Jr 
1996; Kugler and Turvey 1987; Latash 1992) have shown that in rhythmic 
limb movement, such as arm swinging, the limb’s resonance frequency is 
close to the imposed movement frequency. In other words, the central 
nervous system is able to tune into the resonance frequency of the limb, 
which is termed resonance tuning. The limb’s resonance frequency is 
modulated by the joint stiffness, which determines the movement frequency 
(Ch. 3; Verdaasdonk et al. 2006). This might indicate that local reflex gains 
and co-contraction levels are the parameters, which are controlled by supra-
spinal centers to regulate movement frequency. Our hypothesis is that the 
CPG plays a key role in the observed resonance tuning behavior by entraining 
to the dynamical properties of the limb. Hence, the goal of this study is to 
investigate if the existence of spinal CPGs can explain the resonance tuning 
behavior, observed in human rhythmic limb movement. To achieve this goal, 
a neuro-musculo-skeletal model of the forearm is proposed, in which a CPG is 
organized in parallel to the local reflex loop (i.e. stretch reflex and reciprocal 
inhibition). The model is kept as simple as possible in order to investigate the 
plausibility of resonance tuning by entrainment of a CPG to the limb 
dynamics, without drowning in a sea of parameters. Moreover, a detailed 
model cannot be made at present, because too little is known of the exact 
organization and embedding of CPGs in vertebrates, let alone in humans. 
However, the model has enough complexity (see discussion in Sect. 4.1) to 
make a qualitative comparison between the simulation outcomes and the 
above-mentioned studies. In Ch. 3 (Verdaasdonk et al. 2006) the roles of 
CPGs, afferent feedback and modulation of the joint stiffness in providing 
energy efficient and robust rhythmic limb movement were determined for a 
general mass-spring-damper system. This study makes use of the knowledge 
gained in that study. Two important research questions, which are still 
unanswered, are also considered in the present study: (1) What is the 
influence of time delay in the local reflex loop and is compensation for this 
delay possible? (2) Where does the robustness against force perturbations 
come from and what is the role of the CPG in this? 
 
In Sect. 2 a neuro-musculo-skeletal model of rhythmic forearm movement is 
proposed. Literature indicates that at least afferent feedback from Ia and II 
fibers to the flexor and extensor centers are present. This is translated in our 
model to feedback of muscle lengthening and velocity to the half-center 
model (PD-type CPG, Sect. 2.2). An internal process of the CPG, which 
integrates the delayed muscle lengthening and feeds it to the half-center 
model, is added to investigate the possibility of resonance tuning at and 
below the endogenous frequency of the CPG (PID-type CPG, Sect. 2.2). 
Section 3.1 discusses the resonance tuning capability of the CPG in the 
hanging forearm and the effect that time delay in the local reflex loop has on 
this capability. Robustness against force perturbations is discussed for the 
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forearm in upright position, because this position poses more of a challenge 
(Sect. 3.2). 
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2. Neuro-musculo-skeletal model of the 

forearm 

A neuro-musculo-skeletal model of the human forearm is proposed, in which 
the local reflex loop and the CPG are organized in parallel. In this model, the 
afferent and efferent connections to the CPG, though fairly basic, are based 
on clues about the organization of the CPG, found in literature (Burke 2001; 
Burke et al. 2001; Butt et al. 2002; Capaday 2002; Friesen 1994; MacKay-
Lyons 2002; McCrea 2001; Whelan 1996).  
In Fig. 1, an overview of the model is shown. The model is divided in two 
blocks, namely ‘Limb Dynamics’ and ‘Central Pattern Generator’. The 
equations of the neuro-musculo-skeletal model of the forearm can be found 
in App. A. 

2.1 Limb dynamics 

The musculo-skeletal model of the forearm consists of a pendulum with an 
antagonistic muscle pair, shown in Fig. 1 by the block ‘Limb Dynamics’. The 
pendulum represents the forearm, which the muscles can flex and extend 
about the elbow joint. The flexor muscle represents the flexor muscles of the 
forearm, mainly the Brachialis; the extensor muscle represents the extensor 
muscles, mainly the Triceps Brachii. The lumped Hill-type muscle model is 
based on the work of Winters and Stark (1985; 1987) and models both 
activation and contraction dynamics. It consists of a contractile element (CE) 
and a serial elastic element (SE), which is modeled as a non-linear spring. 
Both muscles are parameterized the same way for simplicity (i.e. symmetric 
model) and the musculo-skeletal parameters are estimated with the help of 
different sources (see App. A for references). The joint stiffness of the elbow 
is determined by the amount of co-contraction and by the positional feedback 
gain kp of the local reflex loop. The local reflex loop models the stretch reflex 
and reciprocal inhibition and contains a time delay τ l. It consists of feedback 
of muscle lengthening ∆lmus and velocity vmus with gains kp and kv, 
respectively. This reflexive feedback, together with neural input from supra-
spinal centers uss and the output from the CPG uCPG, gives the excitation of 
the muscles emus. The forearm is perturbed by a moment of force Mp. 
The musculo-skeletal model of the forearm is similar to the model of stance 
discussed extensively in Ch. 2 (Verdaasdonk et al. 2004). Thus, for detailed 
information about the musculo-skeletal model we refer to that chapter. 



 RESONANCE TUNING IN A NEURO-MUSCULO-SKELETAL MODEL OF THE FOREARM  
 

103 

  

2.2 Central Pattern Generator 

The neuro-musculo-skeletal model of the forearm consists of the musculo-
skeletal model of the forearm (Sect. 2.1) coupled to the ‘Central Pattern 
Generator’ (see Fig. 1). The basic rhythm generator of the CPG is 
represented by the half-center model and is based on the work of Matsuoka 
(1985; 1987). The half-center model is extensively discussed in Ch. 3 
(Verdaasdonk et al. 2006) and for detailed information we refer to that 
chapter. We choose the endogenous frequency ωCPG of the half-center model 
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Fig. 1 Neuro-musculo-skeletal model of the forearm. The pendulum represents a 
forearm, which the muscles can flex and extend about the elbow joint. The local reflex 
loop consists of delayed (with τ l) feedback of muscle lengthening ∆lmus and velocity 

vmus with gains kp and kv, respectively. Together with supra-spinal neural input vector 
uss and the output from the CPG uCPG, it gives the excitation of the muscles emus. The 
moment of force Mp perturbs the forearm. The PD-type CPG has afferent input of ∆lmus

and vmus, which is fed to the half-center model with gains gp and gd and time delay τc. 
For the PID-type CPG the half-center model receives additional input from an internal 
process (dashed lines). The delayed muscle lengthening is integrated by a leaking 
integrator with large time constant τ i and is fed to the half-center model with gain gi. 

The half-center model is the basic rhythm generator; its output is coupled to the limb 
by efferent gain ke. 
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(and thus the CPG) to be 2.33 rad/s, because experimental studies of CPG 
activity on isolated spinal cords of rats indicate that the endogenous 
frequency of the CPG is below normal locomotion frequencies (Barthe and 
Clarac 1997; Marchetti et al. 2001; Sqalli-Houssaini et al. 1993). This was 
done by making the time constants τr and τa of the half-center model three 
times larger in comparison with Ch. 3 (Verdaasdonk et al. 2006), thereby 
reducing the endogenous frequency by factor three. The outputs of the flexor 
and extensor center of the half-center model excite the flexor and extensor 
muscles through efferent gain ke. 
 
Clues to the organization of the CPG mainly originate from cat studies (for 
reviews see Barbeau et al. 1999; Burke 2001; McCrea 2001; Van de 
Crommert et al. 1998; Whelan 1996). These suggest that at least afferent 
feedback from Ia and II fibers to the flexor and extensor centers are present. 
Afferent information from the flexor muscle (i.e. Brachialis) excites the flexor 
center and inhibits the extensor center, while afferent information of the 
extensor muscle (i.e. Triceps Brachii) excites the extensor center and inhibits 
the flexor center. In our model, this is translated to feedback of muscle 
lengthening ∆lmus and velocity vmus to the half-center model with gains gp 
and gd and time delay τc. The CPG with this configuration is termed PD-type 
CPG.  
Sqalli-Houssaini (1993) has shown that the rat’s CPG is able to entrain to 
dorsal root stimulation with a larger period than the period of the CPG 
activity in case of no stimulation. In other words, the CPG is able to entrain 
below its endogenous frequency to a feed-forward input (i.e. in an uncoupled 
system). Moreover, the difference in phase between the stimulus input and 
the ipsilateral CPG output only changed roughly by about 60° when 
comparing the minimum entrained stimulus frequency (below endogenous 
frequency) to the maximum (above endogenous frequency). Although these 
observations are not conclusive evidence that the rat’s CPG can indeed 
entrain below endogenous CPG frequency when it is coupled to the limb 
dynamics, the possibility is investigated in this study by adding an internal 
process to the CPG, which integrates the afferent input of muscle lengthening 
information. In fact, delayed muscle lengthening ∆lmus(t-τc) is integrated by a 
leaking integrator with large time constant τ i and is fed to the half-center 
model with gain gi. The CPG with this additional feedback to the half-center 
model is termed PID-type CPG. 
 
The model contains a total of 11 state variables (App. A): the limb angle θ 
relative to the vertical, the angular velocity ω, the active states of the 
Brachialis and the Triceps Brachii, aB and aT, the lengths of the CEs of both 
muscles, lce,B and lce,T, the states of the half-center model uB, vB, uT, vT (Ch. 3; 
Verdaasdonk et al. 2006) and the leaking integral of the angle φ. The latter is 
only present for the PID-type CPG, not for the PD-type. Local reflexive 
feedback cause the angle and angular velocity to appear in delayed form, 
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θ(t-τ l) and ω(t-τ l), respectively. Additionaly, afferent feedback to the CPG 
cause the angle, angular velocity and the integrated angle to appear in 
delayed form, θ(t-τc), ω(t-τc) and φ(t-τc), respectively. Thus, the system is 
of infinite order. The muscles have different time constants for increasing and 
decreasing muscle activation and there is a discontinuity in the slope of the 
force-velocity curve of the CEs at zero velocity. These discontinuities are 
exactly in the equilibrium of the musculo-skeletal model of the forearm and 
render bifurcation analysis difficult. Therefore they have been approximated 
with the help of a 'sharp' tangent hyperbolic function (i.e. steep slope), in the 
same way as in Ch. 2 (Verdaasdonk et al. 2004). Comparing time simulations 
of the model with real discontinuities to solutions obtained by bifurcation 
analysis of the smoothed model revealed no significant change. 
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3. Results of numerical simulations 

Tight local coupling of CPGs to limbs provides robust and energy efficient 
rhythmic movement for a broad band of movement frequencies if the afferent 
feedback to the half-center model behaves as a kind of PID-controller (Ch. 3; 
Verdaasdonk et al. 2006). Moreover, the movement frequency can be 
changed by modulation of the joint stiffness. In this study, we focus on the 
mutual observation of experimental studies (Sect. 1) that the limb’s 
resonance frequency matches the movement frequency closely. Furthermore, 
we start off by assuming that the limb’s resonance frequency is modulated by 
local reflex gains, because hardly any co-contraction was shown during 
rhythmic movement in above-mentioned studies. Furthermore, co-
contraction is an energy consuming way of increasing the stiffness of the limb 
joint and probably only used when necessary. The joint stiffness during 
rhythmic limb movement is not quantified, because stiffness is an ambiguous 
concept for periodic movements; sometimes it is defined relative to the cycle 
(e.g. fitted on a mass-spring-damper model), while other times it is defined 
relative to the unstable posture (i.e. averaged). 
 
In Ch. 3 (Verdaasdonk et al. 2006) periodic solutions were predicted with a 
method termed Describing Function Analysis (DFA). This method is fast if the 
limb dynamics are not too non-linear. However, for highly non-linear limb 
dynamics, such as the musculo-skeletal model of the forearm (Sect. 2.1), 
prediction of periodic solutions with DFA becomes a slow iterative process 
and is not useful anymore. Hence, all the calculations of periodic solutions in 
this paper were carried out by bifurcation analysis and subsequent 
continuation with DDE-BIFTOOL (Engelborghs et al. 2001) and checked by 
time simulations in Matlab. DFA was only used to initially find some afferent 
and efferent gains, for which stable periodic solutions were to be expected. 
 
The resonance tuning capabilities of the PD-type and PID-type CPG in the 
hanging forearm is discussed in Sect. 3.1. The effect of time delay in the local 
reflex loop on these capabilities is also shown, as well as the influence of 
increased co-contraction. In Sect. 3.2, the robustness against force 
perturbations is discussed for the forearm in upright position, because this 
position poses more of a challenge in terms of stability. 

3.1 Resonance tuning for the forearm in hanging 

position 

In this subsection it is investigated to which extent the PD-type and PID-type 
CPG are able to entrain to a range of resonance frequencies ωres of the limb 
dynamics of the hanging forearm. The resonance frequency ωres depends on 
the stiffness of the elbow joint and is changed by changing the reflexive 
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feedback gain of the muscle lengthening kp in the local reflex loop. Firstly, 
the limb dynamics are investigated without coupling the limb to the CPG (i.e. 
the block Limb Dynamics in Fig. 1). Secondly, the limb is coupled to the CPG 
(i.e. the block Central Pattern Generator in Fig. 1) to obtain rhythmic limb 
movement. 

Limb dynamics 

The joint stiffness of the elbow – and by that the resonance frequency ωres – 
is determined by gravity, the intrinsic properties of the muscles and local 
reflexive feedback of muscle length. The small tonic activation, which is 
always present in muscles, is represented by constant supra-spinal inputs 
uss,B=uss,T=0.01 (i.e. a co-activation of the muscles of 1% of maximum). It is 
noted that the musculo-skeletal model of the forearm is not behaving as an 
ideal second order mass-spring-damper model. Muscle dynamics and the 
time delay τ l of 50 ms in the local reflex loop make the limb dynamics highly 
nonlinear. This is especially true for high reflexive feedback gains, because 
then the time delay τ l has much influence on the limb dynamics. Figure 2 
shows that velocity feedback is necessary for positional feedback gains kp 

 
 
 

Hopf

kp

kv

 
 

Fig. 2 A branch of Hopf bifurcations (solid line) divides the parameter space into areas 
of stable posture and stable limit cycles for the forearm, which is modeled as hanging
pendulum with muscles. The parameters are the positional feedback gain kp and the 
velocity feedback gain kv of the local reflex loop. The dashed line (kv=kp/10) shows for 
which local reflex gains the musculo-skeletal model of the forearm is coupled to the 
CPG. 
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higher than 1.7 to obtain stable posture. It compensates for the phase lag 
caused by time delay τ l in the reflex loop, muscle activation dynamics and the 
presence of a compliant SE (Ch. 2; Verdaasdonk et al. 2004). The Hopf 
branch divides the parameter space of positional gain kp versus velocity gain 
kv into regions of stable equilibria and stable limit cycles (Ch. 2; Verdaasdonk 
et al. 2004). The region of stable equilibria represents those reflex gains for 
which stable posture is obtained. In the region of stable limit cycles, the 
posture is unstable, but the limb exhibits periodic movement around the 
unstable posture. The dashed line (kv=kp/10) shows for which local reflex 
gains kp and kv the limb is connected to the PD-type and PID-type CPG, 
respectively. These local reflex gains render the limb underdamped in the 
region of stable posture, which is the case during rhythmic movements 
(Bennett et al. 1992). 

Coupling the limb to the PD-type CPG 

For stable periodic solutions of the total limb model (see Fig. 1), the loop gain 
per definition equals one and the phase between the input and output of the 
block Central Pattern Generator equals the phase between the output and 
input of the block Limb Dynamics. Therefore, the afferent and efferent 
coupling between limb and CPG is chosen in such a way that the gain plot of 
the inverse transfer function of the limb crosses one of the Bode plots of the 
CPG; this ensures stable rhythmic movement as explained thoroughly in Ch. 
3 (Verdaasdonk et al. 2006). Afferent feedback to the half-center model of 
the PD-type CPG consists of delayed muscle lengths and muscle velocities 
with gains gp=800 and gd=60 respectively. The ratio between gp and gd is 
chosen in such a way that afferent feedback of muscle velocity to the CPG 
compensates the phase lag, caused by time delay τc=50 ms in the loop which 
couples limb to CPG. The outputs of the half-center model excite the muscles 
via efferent gain ke=0.01 (see Fig. 1 and App. A).  
In Fig. 3 the black solid line shows the branch of stable periodic solutions for 
the limb coupled to the PD-type CPG. The frequency of the entrained 
rhythmic movement ωe is shown for different positional feedback gains kp of 
the local reflex loop. To ascertain the resonance tuning capabilities of the PD-
type CPG, the resonance frequency of the limb dynamics has to be 
determined and compared with the entrained frequency ωe. The gray dashed 
line in Fig. 3 shows the imaginary part of the rightmost eigenvalues λrm of 
the limb dynamics, which was analytically derived. This method of 
linearization was carried out for a similar model in Ch. 2 (Verdaasdonk et al. 
2004) and is not repeated here. The imaginary part of the rightmost 
eigenvalues λrm represent the limb’s resonance frequency up to the Hopf 
bifurcation at kp=6.05, beyond which the limb becomes linearly unstable (i.e. 
eigenvalues lie in right half plane). At first, the PD-type CPG appeared to be 
bad at tuning into the limb’s resonance frequency, especially at high 
positional feedback gains kp. However, after close examination of the limb 
dynamics, it became evident that the limb’s resonance frequency ωres is 
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highly dependent on the amplitude of the periodic limb movement; this is 
mainly due to the time delay τ l in the local reflex loop. Therefore, a 
linearization of the limb dynamics was performed for input amplitudes, which 
are experienced during the entrained periodic limb movements. A Bode plot 
of the input–output relation is constructed in a similar way as it was done for 
the CPG in Ch. 3 (Verdaasdonk et al. 2006). The inputs of the limb dynamics 
in the coupled system are the alternating outputs of the CPG (uCPG,B=keyB and 
uCPG,T=keyT , see Fig. 1 and app. A). These inputs resemble the halves of a 
sinusoidal wave. Therefore, the input in the linearization is a single sinusoidal 
input where the positive halves of the sinusoid are fed to the flexor muscle, 
while the absolute value of negative halves are fed to the extensor muscle. 
The output in the linearization is the length of the flexor muscle ∆lmus,B 

( )Im λrm

Hopf
ωres

ωe

ωLC

kp

[rad/s]

 
 

Fig. 3 Resonance tuning in the neuro-musculo-skeletal model of the forearm coupled 
to the PD-type CPG. The black solid line represents the entrained movement frequency 
ωe at different positional feedback gains kp of the local reflex loop (the velocity 
feedback gain kv=kp/10, see Fig. 2). The black dashed line shows the resonance 
frequency ωres of the forearm (i.e. without CPG), obtained by linearizing the limb 
dynamics at input amplitudes associated with the entrained periodic movement at the 
accompanying positional feedback gain kp. The Hopf bifurcation represents the reflex 
gains at which the local reflex loop becomes unstable and for higher gains limit cycles 
emerge (gray solid line). The gray dashed line shows the resonance frequency of the 
limb dynamics (i.e. the imaginary part of the rightmost eigenvalues λrm), obtained by 
analytical linearization of the limb dynamics, which is only valid for very small input 
amplitudes. For reflex gains beyond the Hopf point, the eigenvalues lie in the right half 
plane. 
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relative to its rest length. Feeding the negative halves of the input sinusoid to 
the flexor muscle and the positive halves to the extensor muscle, while taking 
the extensor muscle lengthening ∆lmus,T as output gives the same result. The 
amplitude of the sinusoidal input is chosen such that the gain between the 
single frequency Fourier transformations of the input during linearization and 
the CPG output during entrained movement (i.e. keyB minus keyT) at the 
entrained frequency ωe equals unity. For each positional feedback gain kp the 
input amplitude is determined in this way and a Bode plot (i.e. magnitude 
and phase plots) is constructed for input frequencies of 1.0 up to and 
including 20.0 rad/s. Subsequently, the resonance frequency of the limb ωres 
is determined by a bisection method, which converges to the frequency at 
which the peak amplitude of the magnitude occurs. The resonance frequency 
of the limb ωres at different positional feedback gains kp is shown in Fig. 3 by 
the dashed black line. As mentioned before, at a positional feedback gain kp 
of 6.05 a Hopf bifurcation is encountered. Beyond this gain linearization with 
this method is not possible, because the limb dynamics possess a stable limit 
cycle in this region of parameter space (see Fig. 2). Although the analytical 
linearization is only valid for small input values, the imaginary part of its 
rightmost eigenvalues λrm almost equal ωres for low kp. This corresponds to 
the fact that the time delay τ l is the main cause of the amplitude dependent 
resonance frequency of the limb; a higher kp means a larger influence of the 
time delay. 
 
Comparison between the entrained frequency ωe (black solid line) and the 
resonance frequency of the limb dynamics ωres (black dashed line) shows that 
the PD-type CPG actually tunes in close to the limb’s resonance frequency. At 
low positional feedback gains kp – and thus at low ωres – the phase lead of 
the CPG is larger than that of the inverse transfer function of the limb and 
the entrained movement has a frequency ωe higher than ωres (Ch. 3; 
Verdaasdonk et al. 2006). At higher kp the entrained frequency ωe is lower 
than the resonance frequency ωres. This is due to the time delay τ l in the local 
reflex loop, which increases the phase lag of the limb (i.e. the phase lead of 
the inverse transfer function of the limb). The influence of the time delay 
increases with kp.  
The CPG is able to entrain to the limb dynamics, even when the limb is 
linearly unstable and possesses a stable limit cycle on its own. Beyond the 
Hopf bifurcation, that is for kp>6.05 (Figs. 2 and 3), the forearm moves 
periodically, even without being coupled to the CPG. The frequency of this 
periodic movement is shown by the gray solid line in Fig. 3. Just beyond the 
Hopf bifurcation, the amplitude is very small and its frequency is close to that 
of the imaginary part of its rightmost eigenvalues λrm. For increasing reflex 
gains, the amplitude grows towards the amplitude of the entrained periodic 
movement of the forearm with CPG and the frequency decreases towards the 
frequency of the entrained periodic movement. This indicates that the CPG 
even entrains to the linearly unstable limb in an energy efficient way. 
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However, for the unstable limb (i.e. beyond the Hopf bifurcation) the 
minimum amplitude of any entrained periodic limb movement is determined 
by the limit cycle of the limb dynamics. It is therefore unlikely that these 
periodic solutions are realistic. Hence, it can be concluded that the maximal 
frequency of the entrained arm movement is the frequency just before the 
Hopf bifurcation. For the simulation results shown in Fig. 3 – belonging to a 
co-contraction of 0.01 – this maximum adoptable frequency is about 2.4 Hz. 
Higher frequencies are possible by increasing the co-contraction of the 
antagonistic muscle pair. Co-contractions of 0.05, 0.1 and 0.2 give maximum 
frequencies of respectively 3.1, 3.6 and 4.1 Hz. Higher co-contractions give 
even higher maximum movement frequencies. As co-contraction is energy 
consuming, it seems logical that it is used only up to the level necessary to 
achieve the frequency of the entrained movement. This idea agrees with 
studies of rhythmic forearm movements, which have shown that co-
contraction increases with movement frequency (Feldman 1980; Pailhous et 
al. 1996). 

Coupling the limb to the PID-type CPG 

The difference between the PID-type and PD-type CPG is that the former also 
has an internal process that integrates the afferent input of muscle 
lengthening. The entrained frequency ωe of the limb coupled to the PID-type 
CPG is shown in Fig. 4 by the black solid line. At low positional feedback gains 
kp the PID-type CPG, unlike the PD-type CPG (gray solid line), is able to tune 
into the resonance frequency of the limb ωres (dashed black and gray lines). 
However, at medium gains kp the resonance tuning behavior of the PID-type 
CPG is worse compared to the PD-type, because the integrative action 
undoes part of the compensatory action of the velocity feedback to the CPG, 
necessary to cope with the nonlinear characteristics of the forearm 
(especially the muscle dynamics and the time delay in the local reflex loop). 
An explanation of this worse behavior together with a solution by phase 
compensation is stated in App. B and discussed in Sect. 4.1. At high kp the 
PID-type CPG behaves the same as the PD-type, because integral feedback 
to the half-center model has no significant influence at high movement 
frequencies. Note that the resonance frequency of the limb in case of 
coupling to the PD-type CPG and PID-type CPG are almost equal for given 
reflex gains (compare black with gray dashed line), because the entrained 
amplitude is similar in both cases. 



CHAPTER 4 

 

112 

 

3.2 Resonance tuning for the forearm in upright position 

Resonance tuning of the forearm by the CPG is not only possible in hanging 
position, but in fact around every posture. However, robustness against force 
perturbations becomes more of a challenge in these cases. In this subsection 
the forearm is put in upright position for two reasons. The first is to 
determine if the PID-type CPG is able to tune into natural limb frequencies 
below the CPG’s endogenous frequency. This could not be assessed from 
simulations in the hanging forearm (Sect. 3.1), because gravity provides a 
minimum resonance frequency far above the endogenous frequency of the 
CPG (see Figs. 3 and 4). The second reason is to determine the robustness 
against force perturbations. It is a bit trivial to do this in case of a hanging 
forearm, because in that case gravity helps to stabilize the movement. For 
the upright forearm, gravity acts as a destabilizing force. This way, the 
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Fig. 4 Resonance tuning in the neuro-musculo-skeletal model of the forearm coupled 
to the PID-type CPG. The black solid line represents the entrained movement 
frequency ωe at different positional feedback gains kp of the local reflex loop. The black 
dashed line shows the resonance frequency ωres of the forearm (i.e. without CPG), 
obtained by linearizing the limb dynamics at input amplitudes associated with the 
entrained periodic movement. For comparison with the PD-type CPG, the entrained 
movement frequencies and resonance frequencies of Fig. 3 are redrawn in gray solid
(ωe,PD) and dashed lines (ωres,PD), respectively. 
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robustness of the coupled system can be determined as well as to which 
extent the local reflex loop and the CPG help in stabilizing the movement.  
  
Figure 5 shows a fold and Hopf branch in the parameter space spanned by 
local reflex gains kp and kv of the musculo-skeletal model of the upright 
forearm (i.e. without CPG). The vertical fold line represents the minimal 
positional feedback gain kp,min of 1.54 necessary to obtain stable posture; it 
compensates for the negative gravitational stiffness (i.e. negative stiffness 
due to the gravitational forces). Velocity feedback is also necessary for most 
positional feedback gains kp. The fold and Hopf branches divide the 
parameter space into three regions: unstable, stable posture and stable limit 
cycles. For more information on fold and Hopf bifurcations in musculo-
skeletal systems, see Ch. 2 (Verdaasdonk et al. 2004). Entrainment of the 
limb by the CPG is only possible when the posture of the limb is stable, thus 
for positional feedback gains kp>kp,min. For all the simulations in the 
remainder of this subsection, the velocity feedback gain kv is defined by the 
dashed line 
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Fig. 5 Branches of Hopf (black solid line) and fold (gray solid line) bifurcations divide 
the parameter space into areas of stable posture, unstable posture and stable limit 
cycles for the forearm, which is modeled as inverse pendulum with muscles. The 
parameters are the positional feedback gain kp and the velocity feedback gain kv of the 
local reflex loop. The dashed line (kv=(kp-1.54)/10) shows for which local reflex 
parameters the musculo-skeletal model of the forearm is coupled to the PID-type CPG. 
The marked point (kp=5.0) is used for time simulation in Fig. 6. 
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kv=(kp-kp,min)/10, which renders the limb underdamped (as for hanging 
pendulum, Sect. 3.1). 
 
Besides the upright posture of the forearm, all the parameters of the model 
are the same as in Sect. 3.1, except for the efferent gain ke. There is not one 
efferent gain ke for which the coupled system is stable for all considered 
gains kp. The maximal range of gains kp, for which the coupled system is 
stable for a single ke, is from 3.0 up till and including 10.0 and occurs for an 
efferent gain ke of 2.5·10-3. This range corresponds to entrained movement 
frequencies of 3.58 up till 13.85 rad/s. For lower kp the efferent gain ke has 
to be lowered as well for the following reason. The total joint stiffness of the 
elbow (i.e. negative gravitational stiffness plus intrinsic and reflexive joint 
stiffness) goes to zero when kp approaches kp,min, i.e. the fold bifurcation (Ch. 
2; Verdaasdonk et al. 2004). This decreases the gain of the inverse transfer 
function of the limb dynamics tremendously. Therefore, the efferent gain ke 
has to be decreased to make sure the gain plot of the inverse transfer 
function of the limb crosses one of the gain plots of the CPG (Sect. 3.1). For 
the results discussed in the remainder of this section the efferent gain ke was 
chosen in such a way that the periodic limb movement has angular amplitude 
of 0.1 rad. 
 
To determine if the PID-type CPG is able to tune into resonance frequencies 
below its endogenous frequency, the CPG is coupled to the limb with a 
positional feedback gain kp of 1.6 (i.e. very close to the fold bifurcation). This 
gives a resonance frequency of the limb ωres of 1.20 rad/s (determined in the 
same way as in Sect. 3.1). The entrained frequency ωe of 1.28 rad/s is close 
to the resonance frequency ωres: the PID-type CPG is indeed able to tune into 
resonance frequencies of the limb below its endogenous frequency of 2.33 
rad/s. It is noted that a very small efferent gain ke of 4.17·10-5 is necessary 
to obtain this stable periodic solution. Without the CPG’s internal integration 
process, i.e. for the PD-type CPG, the entrained frequency ωe is 2.14 rad/s 
and not close to the resonance frequency ωres

 of 1.20 rad/s. Instead, it is 
close to the endogenous frequency of 2.33 rad/s. In other words, feedback of 
the integrated muscle lengthening to the half-center model is necessary for 
resonance tuning below the endogenous frequency of the CPG. The PID-type 
CPG also tunes into the limb’s resonance frequency for other positional gains 
kp. For example, for a kp of 5.0, the resonance frequency ωres is 8.64 rad/s 
and the entrained frequency ωe is 8.45 rad/s. 
 
The neuro-musculo-skeletal model of the forearm in upright position is 
subjected to perturbations to assess its robustness. Perturbations were 
applied during the flexion phase by exerting a constant external flexion 
moment Mp between a limb angle θ of -0.05 and 0.05 rad; a positive angle θ 
means flexion of the arm. In Fig. 6 three perturbations with increasing 
intensity are subjected to the limb with a local reflex gain kp of 5.0. 
Perturbation moments Mp of 10, 20 and 40 Nm are exerted, corresponding 
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with energy contents Wp of 1.0, 2.0 and 4.0 J, respectively; they are 
indicated in the top graph. On the horizontal axis the time is displayed and on 
the vertical axis from top to bottom: the limb angle θ relative to the vertical, 
the muscle activation of the flexor (i.e. Brachialis) aB and the extensor (i.e. 
Triceps Brachii) aT, and the neural inputs uCPG,B and uCPG,T from the CPG to 
the muscles (beware of difference in scale). A striking result is that only very 
low muscle activation is necessary to sustain steady-state periodic movement 
(2.4% of maximal activation). 
 
The figure shows that immediately after the onset of the perturbation (in fact 
time delay τ l after the onset), the extensor muscle is highly activated to 
oppose the perturbation. Part of this muscle activation originates from the 
extensor center of the CPG, namely the neural input uCPG,T. A small part is 
due to the tonic activation of the muscles (0.01) and the rest originates from 
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Fig. 6 Force perturbations during periodic movement of the neuro-musculo-skeletal 
model of the forearm in upright position with local reflex gains [kp kv]

T = [5.0 0.35]T. 
On the horizontal axis the time is displayed and on the vertical axis from top to 
bottom: the limb angle θ relative to the vertical (positive for flexion), the muscle 
activation of the Brachialis aB (flexor) and the Triceps Brachii aT (extensor), and the 
neural inputs uCPG,B and uCPG,T from the CPG to the muscles. Three perturbations were 
applied with energy content Wp of 1.0, 2.0 and 4.0 J, respectively. These perturbations 
were applied between an angle θ of -0.05 and 0.05 rad by exerting an external flexion 
moment Mp of 10, 20 and 40 Nm, respectively. 
 
 
 



CHAPTER 4 

 

116 

the local reflex loop. For perturbations with higher intensity, the CPG delivers 
a larger part of the total muscle activation used to return to the limit cycle of 
the entrained periodic movement. The CPG delivers a part of 29.8, 31.8 and 
41.0% of the maximal activation of the extensor muscle for perturbations of 
1.0, 2.0 and 4.0 J, respectively (Fig. 6). The CPG has no part in the peak of 
the flexor muscle activation that follows half a period after the perturbation. 
Moreover, the flexor center of the CPG has no output at that time. 
After perturbation, it takes about four cycles to return to the limit cycle of the 
periodic movement, except for sub-maximal perturbations (the last one in 
Fig. 6). The maximal perturbation the neuro-musculo-skeletal model can 
handle during periodic movements depends on the gain kp of the local 
reflexive feedback of muscle length. The maximal perturbations were 
calculated for the following vector of feedback gains kp = [1.6 2.0 3.0 4.0 5.0 
6.0 8.0 10.0]T. The accompanying vector of maximum perturbations is Wp = 
[6.6·10-4 3.4·10-2 0.9 2.5 4.3 6.1 9.3 12.0]T in Joule. Thus, the maximum 
perturbation the forearm can handle is very small for low reflexive feedback 
gains kp and very large for high kp. For low kp the destabilizing force of 
gravity is initially high relative to the restoring force of the compliant limb 
(i.e. low joint stiffness of the elbow). This results in a large angular 
displacement from which the forearm cannot recover. For high kp the 
opposite is true. 
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4. Discussion 

4.1 Neuro-musculo-skeletal model 

Structure and embedding of the central pattern generator 

Information of the structure of the CPG and its embedding in the central 
nervous system mainly comes from cat and rat studies and can partly be 
extrapolated to humans (Duysens et al. 2000; Duysens and Van de 
Crommert 1998), but to which extent is uncertain (Capaday 2002). A large 
difference between locomotion in cats and humans is that cats have 
quadrupedal gaits, while humans have bipedal gaits. Therefore, humans 
depend more on their vestibular and visual system for keeping their balance. 
Dietz (2002) proposed that quadrupedal coordination is still used by humans 
in locomotion, but that a task dependent switch to direct cortical-
motoneuronal control allows for skilled hand movements. Hence, we believe 
humans use the evolutionarily old system of coupled CPGs for ‘automated’ 
rhythmic tasks, such as locomotion and arm swinging.  
The CPGs are embedded in the central nervous system in a complex and 
flexible way (Barbeau et al. 1999; Burke 2001; Burke et al. 2001; Rossignol 
et al. 2002; Whelan 1996).  Inputs to the CPG originate among others from 
muscle afferents and supra-spinal centers. Moreover, various 
neurotransmitters can change CPG activity. The CPG outputs to a complex 
network of interneurons, which finally converges onto the motoneurons. This 
pre-motor network also receives information from supra-spinal centers and 
muscle afferents and is fed back to the CPG. Hence, it would be an illusion to 
think that an exact hard-wired model could be discovered for the CPG and its 
organization within the central nervous system. The wiring is probably 
dependent on the task at hand. Even for a predefined task, such as 
‘unperturbed’ walking, there is still too little information on the structure of 
the CPG and its wiring to develop a detailed model. For this reason and for 
the reason of clarity, the neuro-musculo-skeletal model presented in this 
paper is descriptive in nature (i.e. lumped muscle models, groups of neurons 
are lumped into half-centers, simple reflex model), but incorporates enough 
of the essential dynamics to explain behavior – such as resonance tuning – in 
a qualitative way. Moreover, integration processes and phase compensation 
(see App. B) might be performed by one of the above-mentioned 
polysynaptic pathways, but there is no direct evidence of such feedback yet. 
Phase dependent modulation of reflexes (Brooke et al. 1997; Zehr et al. 
2003) has not been taken into account in the present model. However, 
muscle dynamics (force-length and force-velocity relationships), which play a 
critical role in the functional significance of the stretch reflex during rhythmic 
movement (Kearney et al. 1999), have been taken into account. 
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Integral feedback of muscle length information 

The influence of integral feedback of muscle length information on resonance 
tuning is seen by comparing the simulations with the PID-type CPG to those 
with the PD-type CPG. These are shown in Fig. 4 and the differences are 
explained in App. B. For low resonance frequencies of the limb, the PID-type 
CPG is better than the PD-type CPG at resonance tuning. For medium 
frequencies it is vice versa and for high frequencies the resonance tuning 
behavior of the two CPG types is the same. It would seem that a price has to 
be paid to be able to tune into resonance frequencies below the endogenous 
frequency of the CPG, namely a poor performance at mid-frequencies. 
However, there are two possible solutions to circumvent this deficiency. The 
first is simply to use integral feedback only when the movement frequency is 
below the endogenous frequency of the CPG. In the simulations performed in 
this study all the feedback gains were kept constant to show the adaptability 
of the model to a broad range of resonance frequencies of the limb. In 
humans, these gains could and probably are dynamically changed as 
circumstances require. For example, integral feedback could be modulated by 
pre-synaptic inhibition. The second solution is phase compensation. 
Theoretically, it is possible to obtain perfect resonance tuning when the extra 
phase lag induced by the time-delayed local reflex is compensated by 
additional feedback dynamics (see App. B). In humans this phase matching 
of limb to CPG might be learned by or imprinted in the neural pathways (e.g. 
spinal interneurons) in the loop coupling CPG to limb, or in the CPG itself. 
Whether such phase compensation is plausible with respect to resonance 
tuning in humans is not known at this time. 

Local reflex gains and robustness 

We considered the local reflex gains in this study of rhythmic arm 
movements to be linear and constant during the cycle. Consequently, the 
robustness against perturbations is very small in case the upright forearm is 
entrained to low resonance frequencies of the limb (Sect. 3.2), which does 
not seem very realistic. Non-linear reflex gains – being larger when further 
away from the cycle – could improve the robustness as well as the speed of 
recovery, while leaving the limit cycle of the rhythmic movement – and thus 
the corresponding energy efficiency – intact. 

Difference in CPG model with respect to previous study 

The major difference between the CPG model in this chapter and the one in 
Ch. 3  is that for this CPG model afferent feedback can excite and inhibit the 
flexor and extensor center of the half-center model, while for the CPG model 
of Ch. 3 the centers could only be inhibited. The latter has more robustness 
against variations in limb parameters compared to the former (i.e. larger 
spread in gain plots), while the former has more robustness against external 
force perturbations. This higher robustness against force perturbations is 
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achieved, because the CPG is only able to participate in counteracting 
perturbations when it receives excitatory afferent input. It delivers an 
increasing part of the necessary muscle activation for increasing perturbation 
size (see Fig. 6). 

4.2 Rhythmic movement below resonance frequency of 

the limb 

In the hanging forearm the minimal resonance frequency is determined by 
gravity (about 6.8 rad/s, depending on inertia of arm). Abe (2003) has 
shown that for rhythmic arm movements with frequencies below the minimal 
resonance frequency, the joint stiffness hardly changes; it even increases a 
little for decreasing frequency. He had no explanation for this behavior. It is 
important to note that Abe and Yamada calculated joint stiffness by fitting 
the deviations from the nominal movement cycle – caused by applying 
perturbations – on a mass-spring damper model with separate gravity 
component. In other words, their definition of joint stiffness excludes gravity, 
but includes other components – besides intrinsic and reflexive ones – such 
as the influence of a CPG. Hence, a possible explanation of the observed 
behavior is that for movement frequencies below the minimal resonance 
frequency, ‘feed-forward’ signals from supra-spinal centers input to the CPG, 
while leaving the feedback loop with the muscles afferents intact to provide 
good stability properties (e.g. robustness against perturbations and speed of 
recovery). We applied this idea to our neuro-musculo-skeletal model. As long 
as the feed-forward input dominates the afferent feedback of the muscles in 
amplitude, the CPG could indeed be entrained to feed-forward input with 
frequencies below the minimal resonance frequency of the limb. Furthermore, 
the maximal displacement after perturbation was smaller compared to the 
case of no afferent feedback from the muscles to the CPG, which represents a 
higher joint stiffness according to Abe and Yamada’s definition of joint 
stiffness. This indicates that ‘feed-forward’ input to the CPG – while keeping 
the loop coupling limb to CPG intact – might indeed play an important role in 
the observed behavior that the joint stiffness (i.e. Abe and Yamada’s 
definition) slightly increases with decreasing frequency below the minimal 
resonance frequency of the limb. 

4.3 Conclusion 

This study has discussed resonance tuning in the hanging and upright 
forearm. It was shown that resonance tuning is possible above, at and below 
the endogenous frequency of the CPG in a highly non-linear neuro-musculo-
skeletal model. Resonance tuning is achieved above the endogenous 
frequency by afferent feedback of muscle lengthening and velocity to the 
CPG, in which the latter is necessary for compensation of the time delay 
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present in the loop. This feedback represents the convergence of Ia and II 
fibers onto the CPG. Resonance tuning at and below the endogenous 
frequency is accomplished by integrating the delayed muscle lengthening, 
after which it is fed to the half-center model; this is assumed to be an 
internal process of the CPG. Increased co-contraction will allow for higher 
maximum movement frequency, which is in agreement with studies of 
rhythmic forearm movements that show increased co-contraction as the 
movement frequency becomes higher. Excitatory afferent input enables the 
CPG to actively counteract force perturbations. It delivers an increasing part 
of the necessary muscle activation for increasing perturbation size; the other 
part originates mainly from the local reflex loop. As far as we know, the 
proposed neuro-musculo-skeletal model is the first that is able to explain the 
observed resonance tuning in human rhythmic limb movement, such as arm 
swinging. 



 RESONANCE TUNING IN A NEURO-MUSCULO-SKELETAL MODEL OF THE FOREARM  
 

121 

References 

Abe MO, Yamada N (2003) Modulation of elbow joint stiffness in a vertical plane during 
cyclic movement at lower or higher frequencies than natural frequency. Exp 
Brain Res 153:394-399 

Amemiya M, Yamaguchi T (1984) Fictive locomotion of the forelimb evoked by 
stimulation of the mesencephalic locomotor region in the decerebrate cat. 
Neurosci Lett 50:91-96. 

Baev KV, Esipenko VB, Shimansky YP (1991) Afferent control of central pattern 
generators: experimental analysis of scratching in the decerebrate cat. 
Neuroscience 40:239-256 

Barbeau H, McCrea DA, O'Donovan MJ, Rossignol S, Grill WM, Lemay MA (1999) 
Tapping into spinal circuits to restore motor function. Brain Res Brain Res Rev 
30:27-51 

Barthe JY, Clarac F (1997) Modulation of the spinal network for locomotion by 
substance P in the neonatal rat. Exp Brain Res 115:485-492 

Bennett DJ, Hollerbach JM, Xu Y, Hunter IW (1992) Time-varying stiffness of human 
elbow joint during cyclic voluntary movement. Exp Brain Res 88:433-442 

Brooke JD, Cheng J, Collins DF, McIlroy WE, Misiaszek JE, Staines WR (1997) Sensori-
sensory afferent conditioning with leg movement: gain control in spinal reflex 
and ascending paths. Prog Neurobiol 51:393-421 

Brown TG (1911) The intrinsic factors in the act of progression in the mammal. In: 
Proc Royal Soc. Vol. B84, London, pp 308-319 

Burke RE (2001) The central pattern generator for locomotion in mammals. Adv Neurol 
87:11-24 

Burke RE, Degtyarenko AM, Simon ES (2001) Patterns of locomotor drive to 
motoneurons and last-order interneurons: clues to the structure of the CPG. J 
Neurophysiol 86:447-462 

Butt SJ, Lebret JM, Kiehn O (2002) Organization of left-right coordination in the 
mammalian locomotor network. Brain Res Brain Res Rev 40:107-117 

Cannon SC, Zahalak GI (1982) The mechanical behavior of active human skeletal 
muscle in small oscillations. J Biomech 15:111-121 

Capaday C (2002) The special nature of human walking and its neural control. Trends 
Neurosci 25:370-376 

Carroll TJ, Baldwin ER, Collins DF, Zehr EP (2006) Corticospinal excitability is lower 
during rhythmic arm movement than during tonic contraction. J Neurophysiol 
95:914-921 

Cazalets JR, Borde M, Clarac F (1995) Localization and organization of the central 
pattern generator for hindlimb locomotion in newborn rat. J Neurosci 
15:4943-4951 

Cohen AH, Wallen P (1980) The neuronal correlate of locomotion in fish. "Fictive 
swimming" induced in an in vitro preparation of the lamprey spinal cord. Exp 
Brain Res 41:11-18 

Dietz V (2002) Do human bipeds use quadrupedal coordination? Trends Neurosci 
25:462-467 

Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998) Evidence for a spinal central pattern 
generator in humans. Ann N Y Acad Sci 860:360-376. 

Duysens J, Clarac F, Cruse H (2000) Load-regulating mechanisms in gait and posture: 
comparative aspects. Physiol Rev 80:83-133. 



CHAPTER 4 

 

122 

Duysens J, Van de Crommert HW (1998) Neural control of locomotion; The central 
pattern generator from cats to humans. Gait Posture 7:131-141. 

Engelborghs K, Luzyanina T, Samaey G (2001) DDE-BIFTOOL v. 2.00: a Matlab 
package for bifurcation analysis of delay differential equations. Technical 
Report TW-330, Department of Computer Science, K.U. Leuven, Leuven 

Feldman AG (1980) Superposition of motor programs--I. Rhythmic forearm movements 
in man. Neuroscience 5:81-90 

Friesen WO (1994) Reciprocal inhibition: a mechanism underlying oscillatory animal 
movements. Neurosci Biobehav Rev 18:547-553 

Grillner S, McClellan A, Perret C (1981) Entrainment of the spinal pattern generators 
for swimming by mechano- sensitive elements in the lamprey spinal cord in 
vitro. Brain Res 217:380-386. 

Hatsopoulos NG, Warren Jr WH (1996) Resonance tuning in rhythmic arm movements. 
J Mot Behav 28:3-14 

Hayes KC, Hatze H (1977) Passive visco-elastic properties of the structures spanning 
the human elbow joint. Eur J Appl Physiol Occup Physiol 37:265-274 

Kearney RE, Lortie M, Stein RB (1999) Modulation of stretch reflexes during imposed 
walking movements of the human ankle. J Neurophysiol 81:2893-2902. 

Kugler PN, Turvey MT (1987) Information, Natural law, and the self-assembly of 
rhythmic movement. In. Lawrence Erlbaum, Hillsdale, NJ, pp 481 

Latash ML (1992) Virtual trajectories, joint stiffness, and changes in the limb natural 
frequency during single-joint oscillatory movements. Neuroscience 49:209-
220 

MacKay-Lyons M (2002) Central pattern generation of locomotion: a review of the 
evidence. Phys Ther 82:69-83. 

Marchetti C, Beato M, Nistri A (2001) Alternating rhythmic activity induced by dorsal 
root stimulation in the neonatal rat spinal cord in vitro. J Physiol 530:105-112 

Matsuoka K (1985) Sustained oscillations generated by mutually inhibiting neurons 
with adaptation. Biol Cybern 52:367-376 

Matsuoka K (1987) Mechanisms of frequency and pattern control in the neural rhythm 
generators. Biol Cybern 56:345-353 

McCrea DA (2001) Spinal circuitry of sensorimotor control of locomotion. J Physiol 
533:41-50 

Nakamura Y, Katakura N, Nakajima M (1999) Generation of rhythmical ingestive 
activities of the trigeminal, facial, and hypoglossal motoneurons in in vitro 
CNS preparations isolated from rats and mice. J Med Dent Sci 46:63-73 

Pailhous J, Bonnard M, Coyle T (1996) Autonomy versus forcing in the organization of 
human rhythmic forearm movements. C R Acad Sci III 319:773-777 

Perreault EJ, Crago PE, Kirsch RF (2000) Estimation of intrinsic and reflex contributions 
to muscle dynamics: a modeling study. IEEE Trans Biomed Eng 47:1413-1421 

Rossignol S, Bouyer L, Barthelemy D, Langlet C, Leblond H (2002) Recovery of 
locomotion in the cat following spinal cord lesions. Brain Res Brain Res Rev 
40:257-266 

Schaal S, Sternad D, Osu R, Kawato M (2004) Rhythmic arm movement is not discrete. 
Nat Neurosci 7:1136-1143 

Shik ML, Severin FV, Orlovskii GN (1966) Control of walking and running by means of 
electrical stimulation of the mid-brain. Biophysics 11:756-765 

Sqalli-Houssaini Y, Cazalets JR, Clarac F (1993) Oscillatory properties of the central 
pattern generator for locomotion in neonatal rats. J Neurophysiol 70:803-813 

Taylor BE, Lukowiak K (2000) The respiratory central pattern generator of Lymnaea: a 
model, measured and malleable. Respir Physiol 122:197-207 



 RESONANCE TUNING IN A NEURO-MUSCULO-SKELETAL MODEL OF THE FOREARM  
 

123 

Van de Crommert HW, Mulder T, Duysens J (1998) Neural control of locomotion: 
sensory control of the central pattern generator and its relation to treadmill 
training. Gait Posture 7:251-263. 

Verdaasdonk BW, Koopman HF, Helm FC (2006) Energy efficient and robust rhythmic 
limb movement by central pattern generators. Neural Netw 19:388-400 

Verdaasdonk BW, Koopman HF, Van Gils SA, Van Der Helm FC (2004) Bifurcation and 
stability analysis in musculoskeletal systems: a study in human stance. In: 
Biol Cybern. Vol. 91, pp 48-62 

Whelan PJ (1996) Control of locomotion in the decerebrate cat. Prog Neurobiol 49:481-
515 

Winters JM, Stark L (1985) Analysis of fundamental human movement patterns 
through the use of in- depth antagonistic muscle models. IEEE Trans Biomed 
Eng 32:826-839. 

Winters JM, Stark L (1987) Muscle models: what is gained and what is lost by varying 
model complexity. Biol Cybern 55:403-420 

Winters JM, Stark L (1988) Estimated mechanical properties of synergistic muscles 
involved in movements of a variety of human joints. J Biomech 21:1027-1041 

Zehr EP, Chua R (2000) Modulation of human cutaneous reflexes during rhythmic 
cyclical arm movement. Exp Brain Res 135:241-250 

Zehr EP, Collins DF, Frigon A, Hoogenboom N (2003) Neural control of rhythmic human 
arm movement: phase dependence and task modulation of hoffmann reflexes 
in forearm muscles. J Neurophysiol 89:12-21 

Zehr EP, Kido A (2001) Neural control of rhythmic, cyclical human arm movement: 
task dependency, nerve specificity and phase modulation of cutaneous 
reflexes. J Physiol 537:1033-1045 

Zhang LQ, Rymer WZ (1997) Simultaneous and nonlinear identification of mechanical 
and reflex properties of human elbow joint muscles. IEEE Trans Biomed Eng 
44:1192-1209 

  



CHAPTER 4 

 

124 

Appendix A. Neuro-musculo-skeletal model 

The neuro-musculo-skeletal model of the forearm consists of a pendulum 
with an antagonistic muscle pair; the local reflex loop and the CPG are 
organized in parallel. Except for the CPG, this model is similar to the 
musculo-skeletal model presented in Ch. 2 (Verdaasdonk et al. 2004); details 
of the muscle model and its intrinsic and reflexive feedback are described in 
that chapter. 
The model contains a total of 11 state variables. The state variables 
associated with the flexor muscle are denoted with a ‘B’ of Brachialis; the 
state variables associated with the extensor muscle are denoted with a ‘T’ of 
Triceps Brachii. The state variables are: the activities of both muscles, aB and 
aT, the length of the CEs of both muscles (normalized on muscle rest length 
lm0), lce,B and lce,T, the angle θ and angular velocity ω of the forearm, the 
state variables of the CPG model uB, vB, uT and vT and the integrated angle θ, 
denoted φ. For the latter state variable φ, the integration of the angle θ is in 
fact performed by a leaking integrator (pole at –1/τ i, see Eq. B.11) to prevent 
infinite gain at zero frequency. 
Stretch reflexes are modeled by delayed feedback of the length of both 
muscles relative to the rest lengths lm0, ∆lmus,B and ∆lmus,T, and the velocities 
of both muscles, vmus,B and vmus,T. The lengths are locally fed back with gain 
kp and the velocities with gain kv. Feedback to the half-center model consists 
of delayed muscle lengths, muscle velocities and the (leaking) integral of the 
muscle length changes with gains gp, gd and gi respectively. Note that for the 
PD-type CPG gi is taken zero. 
 
A direct relation is assumed between the muscle lengths, velocities and the 
integrated muscle length changes and the angle, angular velocity and 
integrated angle, respectively: 
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 (A.1) 

in which ∫leak represents the leaking integral and r is the constant moment 
arm about the elbow.  
 
Thus, reflexive feedback is modeled as delayed feedback of angle θ(t-τ l) and 
angular velocity ω(t-τ l). Feedback to the half-center model is modeled as 
delayed feedback of angle θ(t-τc), angular velocity ω(t-τc) and the integrated 
angle φ(t-τc). The CPG outputs uCPG,B and uCPG,T (see Sect. 2.2 for details) 
excite the muscle activations aB and aT, respectively. 
 
The equations of motions are:  
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( ) ( )( )B ss,B B p 16 l v 16 l CPG,B
B

1
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( )i
i

1
ϕ τ θ ϕ

τ
= −�  (A.12) 

 
The force-length relationships of CEs of the muscles are: 

( )
2

2 ce,B 3

ce,B

c l c
Fl e

− −
=  (A.13) 

( )
2

2 ce,T 3

ce,T

c l c
Fl e

− −
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The force in the non-linear springs of the SEs of both muscles are: 

( )( )8 1 ce,B 91

se,B 10 B ce,B 7min , 1
c c l c

F c a Fl c e
θ− − − = −

  
 (A.15) 

( )( )8 1 ce,T 91

se,T 10 T ce,T 7min , 1
c c l c

F c a Fl c e
θ− − − = −

  
 (A.16) 

 
The momentary values of the force-velocity relationships of the muscle, 
which are used to calculate the CE velocities in Eqs. A.4 and A.5, are: 

se,B
ce,B

5 B ce,B

F
Fv

c a Fl
=  (A.17) 

se,T
ce,T

5 T ce,T

F
Fv

c a Fl
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The maximum velocities of CEs of the muscles are: 

( )( )max,B 14 15 B ce,B1 1v c c a Fl= − −  (A.19) 

( )( )max,T 14 15 T ce,T1 1v c c a Fl= − −  (A.20) 

 
The activation and de-activation time constants of the muscle activation 
dynamics are: 
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The perturbation moment Mp is zero for most simulations shown in this paper 
(except Sect. 3.2, see Fig. 6). 
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The outputs of the flexor and extensor centers are: 

( )B Bmax 0,y u=  (A.23) 

( )T Tmax 0,y u=  (A.24) 

 
The CPG outputs equal the half-center outputs multiplied by the efferent gain 
ke: 

CPG,B e Bu k y=  (A.25) 

CPG,T e Tu k y=  (A.26) 

Boundary conditions on certain state variables and functions 
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CPG parameters 

τ i  = 9.0  s time constant for leaking integrator  
   (pole at –1/τ i) 
τr  = 0.3  s rise time constant 
τa  = 0.6  s adaptation time constant  
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β  = 2.0  strength adaptation effect 
w  = 2.0  strength of reciprocal inhibition 
u0  = 1.0  tonic input to CPG from supra-spinal centers 
τc  = 50·10-3  s  time delay in the loop coupling limb to CPG 

Musculo-skeletal parameters 

m  = 2.0  kg mass of forearm including hand 
I  = 0.1  kgm2 mass moment of inertia about elbow joint 
Bj  = 0.1  Nms/rad joint damping of the elbow 
lcom  = 0.2  m length between COM and elbow joint 
r  = 0.025  m moment arm about elbow 
g  = 9.81  m/s2 gravity constant 
lm0  = 0.245  m rest length of muscle 
lt  = 0.18  m tendon length 
lce0  = 0.3  optimum length of CE (normalized on lm0) 
lcesh  = 0.09  shape parameter determining width of Flce 

Fmax  = 2000  N maximum active muscle force 
mver  = 0.5  scaling parameter for maximal contraction 
   velocity 
mvvm  = 3.0 lm0  1/s maximal contraction velocity of unloaded CE 
mvsh  = 0.36  shape parameter of curvature of Fvce 

mvshl  = 0.5  shape parameter for lengthening curve of Fvce 
mvml  = 1.3  maximal force gain for lengthening muscles 
sesh  = 2.6  curvature shape parameter of exponential 
   slope of SE 
sexm  = 0.047  maximal extension of SE (normalized on lm0) 
τac  = 7.0·10-3  s time-constant for increased muscle activation 
τda  = 35·10-3 s time-constant for decreasing muscle activation 
τ l  = 50·10-3  s time delay in local reflex loop 
 
These values of the musculo-skeletal parameters could not be derived from 
one source. That is why multiple sources were used.  The parameter values 
lm0, lt, sesh, τac and τda are from Winters and Stark (1988). The parameter 
values lcesh, lce0, mver, mvvm, mvsh, mvshl, mvml and sexm are estimated by the 
methods of Winters and Stark (1985; 1987). The parameter values of I, r 
and Fmax are from Cannon and Zahalak (1982); m and lcom are estimated; a 
joint damping Bj of 0.1 Nms/rad is a plausible value (Hayes and Hatze 1977). 
The values found in literature for the time delay τ l of the elbow joint’s reflex 
loop range from 11 ms (Cannon and Zahalak 1982) to 50 ms (Perreault et al. 
2000; Zhang and Rymer 1997); in this study the worse case, that is 50 ms, 
is chosen. The time delay τc in the loop coupling the limb’s afferents and 
efferents to the CPG is chosen as 50 ms; this seems a plausible value, for 
this loop exists on spinal level. 
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Appendix B. Achieving perfect resonance 

tuning by phase compensation 

Effect of the local reflex loop on resonance tuning 

The half-center model of the CPG has a phase lead between the output and 
input of 180° for low frequencies and 90° for high frequencies, with the CPG’s 
endogenous frequency ωCPG as turning point. Integral feedback to the half-
center model with gain gi=gpωCPG causes the phase lead of the CPG (i.e. half-
center model and integral feedback) to be close to 90° for all frequencies. As 
mentioned in Sect. 3.1, entrainment occurs at that frequency for which the 
phase lead of the CPG equals the phase lag of the limb dynamics. Figure B.1 
shows that for low resonance frequencies ωres the limb acts almost as a 
second order mass-spring-damper model with a phase lag close to 90° (gray 
solid line, left vertical axis). The mechanical properties of the limb are 
dominant for low resonance frequencies, because these resonance 
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ϕcomp

(-90- )ϕres
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Fig. B.1 Left axis: Phase difference between the input and output of the forearm φres

(i.e. without CPG) at the resonance frequencies ωres (gray solid line). Right axis: The 
difference in phase between an ideal second order limb at resonance (i.e. –90°) and 
the phase of the forearm φres is shown by the dashed line. Additional afferent feedback 
dynamics Hcomp approximately compensates for this difference in phase (black solid 
line). 
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frequencies are obtained by small local reflex gains (see Fig. 4). Therefore, 
the PID-type CPG achieves almost perfect resonance tuning behavior at low 
movement frequencies, unlike the PD-type CPG.  
 
For high movement frequencies the dynamics of the local reflex loop become 
significant and the limb does not behave as a simple mechanical pendulum 
anymore. This is caused by the time delay in the local reflex loop together 
with the muscle dynamics and becomes more significant when the local reflex 
gains become higher, as is the case for higher resonance frequencies of the 
limb. This is shown by the phase difference φres of the input-output relation of 
the limb dynamics at its resonance frequency in Fig. B.1 (gray solid line, left 
vertical axis), which is far from -90° for high frequencies. At these 
frequencies, feedback of muscle velocity to the CPG compensates most of the 
extra phase lag caused by the local reflex loop. This causes the resonance 
tuning behavior of the CPGs to be good for both the PD-type and PID-type 
CPG, because the integral feedback has no influence at high movement 
frequencies. 
 
At medium movement frequencies (i.e. medium local reflex gains) the 
integral feedback still brings the CPG’s phase lead towards 90°, while at 
these frequencies the local reflex loop has already significant influence on the 
behavior of the limb: the limb is not acting as a second-order mass-spring-
damper system with a 90° phase lag at its resonance frequency. This actually 
causes the resonance tuning behavior of the PID-type CPG to be worse at 
medium movement frequencies compared to the PD-type (see Fig. 4). In 
other words, at medium frequencies integral feedback counteracts the 
compensatory work of velocity feedback. 

Phase compensation improves resonance tuning 

Theoretically, perfect resonance tuning can be achieved by making the phase 
lead of the CPG equal to the phase lag of the limb (Ch. 3; Verdaasdonk et al. 
2006). Hence, the resonance tuning behavior of the PID-type CPG can be 
greatly improved when the extra phase lag caused by the local reflex loop is 
compensated by additional feedback dynamics. Figure B.1 shows the extra 
phase lag (-90 - φres) by the dashed line (right axis). 
In order to demonstrate that phase compensation actually improves 
resonance tuning, the following transfer function Hcomp is added to the 
feedback dynamics (e.g. directly before the half-center model in Fig. 1): 
 

2

2

280 (s  + 11.51s + 263.7)

(s + 31.57) (s  + 11.51s + 1812)
compH =  (B.1) 

 
 Note that this function has no physical meaning, but is merely chosen in 
such a way that it approximately compensates for the extra phase lag 
introduced by the local reflex loop. In Fig. B.1 this approximation is shown by 
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the black solid line (right axis). In Fig. B.2 the results are shown for the CPG 
coupled to the limb. 
 
The gray solid line in Fig. B.2 represents the entrained movement frequency 
ωe,comp in case Hcomp is added to the feedback dynamics. It shows a significant 
overall improvement in the ability to tune into the resonance frequency of the 
limb ωres, except for positional feedback gains kp below 1.4. At these low kp 
the phase lead of the PID-type CPG is less close to 90° than the phase lead 
shown by the Bode plot of the CPG with inhibitory inputs only (Ch. 3; 
Verdaasdonk et al. 2006); it has a maximum of 125° at kp=1.4 for the phase 
plot belonging to a 0.2 rad angular movement. Thus, by making the phase of 
the combination of limb dynamics and Hcomp close to an ‘ideal’ 90°, results 
are actually worsened. The compensatory dynamics Hcomp can be changed to 
account for this, which will improve the resonance tuning behavior at these 
low kp, but that is not the goal of this example. The example clearly shows 
that an approximate compensation of the extra phase lag introduced by the 
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Fig. B.2 Resonance tuning in the neuro-musculo-skeletal model of the forearm coupled 
to a PID-type CPG. The black solid line represents the entrained movement frequency 
ωe at different positional feedback gains kp of the local reflex loop (compare with Fig. 
4). The dashed line shows the resonance frequency ωres of the forearm (i.e. without 
CPG), obtained by linearizing the limb dynamics at input amplitudes associated with 
the entrained periodic movement. The gray solid line represents the entrained 
movement frequency ωe,comp in case additional feedback dynamics Hcomp is present to 
approximately compensate the time delay in the local reflex loop τ l (see Fig. B.1). 
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local reflex loop can improve resonance tuning considerably. However, 
whether phase compensation is plausible with respect to resonance tuning in 
humans is not known at this time 
It is noted that for the results shown in Fig. B.2, linearization of the limb 
dynamics was calculated for input amplitudes experienced when coupled to 
the PID-type CPG with and without additional dynamics Hcomp. However, the 
difference in calculated resonance frequency of the limb ωres between both 
cases is so small that it is almost indistinguishable in a figure. Therefore, ωres 
is only shown in Fig. B.2 for the linearization associated with the entrained 
periodic movements without Hcomp. 
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Abstract 

Like human walking, passive dynamic walking – i.e. walking down a slope 
with no actuation except gravity – is energy efficient by exploiting the natural 
dynamics. In the animal world, neural oscillators termed Central Pattern 
Generators (CPGs) provide the basic rhythm for muscular activity in 
locomotion. We present a CPG model, which automatically tunes into the 
resonance frequency of the passive dynamics of a bipedal walker, i.e. the 
CPG model exhibits resonance tuning behavior. Each leg is coupled to its own 
CPG, controlling the hip moment of force. Resonance tuning above the 
endogenous frequency of the CPG – i.e. the CPG’s eigenfrequency – is 
achieved by feedback of both limb angles to their corresponding CPG, while 
integration of the limb angles provides resonance tuning at and below the 
endogenous frequency of the CPG. Feedback of the angular velocity of both 
limbs to their corresponding CPG compensates for the time delay in the loop 
coupling each limb to its CPG. The resonance tuning behavior of the CPG 
model allows the gait velocity to be controlled within a large range by a 
single parameter, while retaining the energy efficiency of passive dynamic 
walking. 
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1. Introduction 

Walking is an important function of the human movement apparatus. Healthy 
people are not aware of the complexity of walking; they walk with little effort, 
without consciously thinking about it. During the stance phase, the stance leg 
acts as an inverted pendulum with a mass on top. Therefore, human walking 
is statically unstable. Thus, an interesting question is how human gait can be 
dynamically stable, robust and energy efficient at the same time. In this 
study we focus on the energy efficiency of walking. 
Observations of human walking show that most of the muscles are only 
highly active at the beginning and end of the stance and swing phase (Inman 
et al. 1981). Ballistic gait models are based on these observations. They 
exploit their natural dynamics: the legs behave as a jointed pendulum, 
moving passively through the swing phase under the action of gravity 
(Mochon and McMahon 1980). Therefore, ballistic gait models are very 
energy efficient. However, the lack of control during the swing phase gives 
them poor robustness against perturbations. Even small perturbations can 
accumulate during the swing phase into large foot placement errors at heel 
strike. Hence, control is necessary during the entire gait cycle to obtain 
robust gait, but should leave the natural dynamics intact as much as possible 
to obtain energy efficient gait. The latter is not the mainstream starting-point 
of bipedal gait control: path-following control and control based on keeping 
the COP (center of pressure) within the foot base of support are common in 
robotics. However, this kind of control will force the actual walking cycle to 
differ from the natural walking cycle. This costs a lot of energy and is 
therefore unlikely to be used in human gait. Neural oscillators in the spinal 
cord, termed Central Pattern Generators (CPGs), are likely to play a key role 
in providing energy efficient human gait, for the following reasons. Firstly, 
many animals use CPGs to control gait. CPGs excite the muscles in a periodic 
fashion, giving rise to stable locomotion. Most evidence of the existence of 
CPGs in vertebrates comes from lamprey (e.g. Grillner et al. 1981), rats (e.g. 
Cazalets et al. 1995; e.g. Sqalli-Houssaini et al. 1993) and cats (e.g. 
Amemiya and Yamaguchi 1984; e.g. Shik et al. 1966); for reviews see 
MacKay-Lyons (2002), Whelan (1996) and Grillner et. al. (1998). Secondly, it 
has been shown that a simple model of a CPG is able to provide energy 
efficient rhythmic single limb movement (Ch. 3 and 4; Verdaasdonk et al. 
2006; Verdaasdonk et al. 2007b). Although no direct evidence of CPGs in the 
human body is found yet, indications of their existence are present (e.g. 
Dimitrijevic et al. 1998).  
It has been shown in bipedal gait models (Taga 1995a; Taga et al. 1991; 
Verdaasdonk et al. 2007a (Ch. 6); Verdaasdonk et al. 2004b) that mutual 
entrainment of the CPGs with the musculo-skeletal system and its 
environment creates a stable limit cycle which is quite robust against 
perturbations (Taga 1995b; Verdaasdonk et al. 2007a (Ch. 6)). The 
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robustness is caused by the coupling between CPGs and musculo-skeletal 
system, which continuously cause perturbed state variables to be pulled back 
towards the limit cycle during the entire gait cycle. 
The energy efficiency of CPG controlled gait has not been considered up to 
now. In Ch. 3 and 4 (Verdaasdonk et al. 2006; Verdaasdonk et al. 2007b) it 
was shown that CPGs are very suitable for energy efficient and robust 
rythmic single limb movement.  The CPGs entrain to reflexive inputs, such as 
muscle length and velocity. This means that the CPGs adapt their outputs 
(i.e. frequency and amplitude) to the ‘mechanical oscillator’ in such a way 
that stable rhythmic movement is obtained, which is robust and energy 
efficient. The energy efficiency is obtained by tuning into the resonance 
frequency of the musculo-skeletal system. The type of afferent feedback to 
the flexor and extensor centers of the CPG plays a crucial role in obtaining 
this resonance tuning behavior of the CPG. In this study the ‘mechanical 
oscillator’ is a simple gait model and we investigate whether the principles of 
CPG-controlled energy efficient and robust rhythmic limb movement (Ch. 3 
and 4; Verdaasdonk et al. 2006; Verdaasdonk et al. 2007b) also apply to 
walking.  
Passive dynamic walking (McGeer 1990) – i.e. walking down a slope with no 
actuation except gravity – is an extreme form of ballistic walking (Mochon 
and McMahon 1980) and is very energy efficient. Drawbacks of passive 
dynamic walking are the poor robustness, as shown by the small size of its 
basin of attraction (Schwab and Wisse 2001), and of course the lack of 
controllability. The goal of this study is to control the quality of bipedal gait in 
terms of stride length, stride period and thus velocity, while keeping the 
energy efficient behavior of passive dynamic walking intact. To achieve this 
goal, we start off with a passive dynamic walking model and subsequently 
add biologically inspired control. This control consists of a CPG tightly coupled 
to each hip joint. 
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2. Methods 

To investigate if central pattern generators (CPGs) are able to maintain the 
energy efficiency of passive dynamic walkers, we start off with a passive 
dynamic walking model (Sect. 2.1). Subsequently, each leg is locally coupled 
to its own CPG at the hip joint (Sect. 2.2). This coupling is afferent and 
efferent, associated with sensory feedback and motor control, respectively. 
The total bipedal walker can be seen as two coupled oscillators. One oscillator 
is the passive dynamic walker (Fig. 1) and the other oscillator is the neural 
oscillator, which consists of one CPG per hip joint (Fig. 2). By coupling these 
two oscillators tightly, the combined system will oscillate at one frequency 
and result in stable gait. The energy efficiency of the CPG-controlled gait 
model is discussed in Sect. 2.3 and depends on two factors. The first is the 
ability of the neural oscillator to tune into the resonance frequency of the 
passive dynamic walker, which is termed resonance tuning ability. The 
second is the energy losses by damping, mainly caused by impact during heel 
strike. 

2.1 The Passive Dynamic Walker 

The passive dynamic walking model consists of two rigid legs (Fig. 1). The 
legs are connected at the hip by a frictionless hinge joint and have point feet. 
The model only has three point masses: one point mass mh at the hip and 
two smaller point masses mf located at the feet. Since the walker does not 
have knees, ground-clearance during swing phase is provided artificially 
(App. A). The passive dynamic walker is able to walk passively down a small 
slope α. In that case, gravity provides exactly as much energy during the gait 
cycle as is lost by damping (mainly at heel strike). The stride frequency of 
this walker – its ‘resonance frequency’ – is changed by adding rotational hip 
stiffness Kh. 
The model without hip stiffness (i.e. Kh=0) resembles minimalistic models of 
passive dynamic walking, such as the ‘The simplest walking model’ (1998) 
and the ‘compass gait model’ (Goswami et al. 1997). The major difference 
between our model and most other passive dynamic walking models (Borzova 
and Hurmuzlu 2004; Garcia et al. 1998; Goswami et al. 1997; McGeer 1990; 
van der Linde 1999) is the way foot-ground contact is described. The ground 
reaction force is modeled by viscous damping in both x- and y-direction and 
stiffness only in y-direction (see App. A for details). This makes investigation 
of walking on different types of ground (e.g. slippery) possible (although not 
done in this study). Most other models make use of impact equations at heel 
strike, after which the legs are switched and a new swing phase starts (e.g. 
Schwab and Wisse 2001). Our model is a continuous-time model, able to 
walk ‘for ever’ instead of one step at the time. The approach of Lagrange was 
used to derive the equations of motion (see App. B). The equations of motion 
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are expressed in four generalized coordinates q = [xh yh θr θl]
T, in which xh 

and yh are the coordinates of the hip mass mh parallel and perpendicular to 
ground level, respectively, and θr and θl are the angles of respectively the 
right and left leg relative to the perpendicular of the ground. 

2.2 Coupling the Legs to Central Pattern Generators 

Central patterns generators (CPGs) are neural networks in the spinal cord, 
which output periodic excitation to the muscles, even in a completely isolated 
spinal cord (Nishimaru and Kudo 2000; Sqalli-Houssaini et al. 1993). The 
CPG model used in this study is similar to the ‘PID-type’ CPG, discussed in 
Ch. 3 (Verdaasdonk et al. 2006). The CPG model features Positional, Integral 
and Derivative feedback of the limb angle to the flexor and extensor centers 
of the CPG. Previous studies (Verdaasdonk et al. 2006; Verdaasdonk et al. 
2007b) have shown that this type of afferent feedback is crucial in providing 
energy efficient control in rhythmic single limb movement. In these studies, 
feedback of positional information was shown to provide resonance tuning 
above the CPG’s endogenous frequency fCPG (i.e. the natural frequency at 
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Fig. 1 The passive dynamic walker. The model has a large hip mass mh relative to the 
mass of the feet mf. The legs have length lleg and the hips have rotational stiffness Kh. 
The model is able to walk passively down a slope α, for which gravity g supplies all the 
energy needed to overcome impact losses. Foot-ground contact is modeled by damping 
Bx in the x-direction and by damping By and stiffness Ky in the y-direction. The 
generalized coordinates are the hip angles θr and θl and the coordinates of the hip 
mass xh and yh. 
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which the uncoupled CPG oscillates). Integral feedback was shown to provide 
resonance tuning at and below fCPG. Feedback of velocity information (i.e. 
derivative feedback) was shown necessary to compensate for the time delay 
in the loop coupling limb to CPG, else resonance tuning is not possible at high 
movement frequencies (Ch. 3; Verdaasdonk et al. 2006).  
The CPG model is shown in Fig. 2 and its equations are stated in App. C. The 
basic rhythm generator of the CPG is a half-center model. It is based on the 
work of Matsuoka (1985; 1987) and was discussed at length in Ch. 3 
(Verdaasdonk et al. 2006). Literature (Barbeau et al. 1999; Burke 2001; 
McCrea 2001; Van de Crommert et al. 1998; Whelan 1996) suggests 
feedback from Ia and II fibers to the flexor and extensor centers are present 
during walking. This is abstracted in our model as delayed feedback of the 
leg’s angle θj and angular velocity ωj (j={r,l}) to the half-center model with 
gains gp and gd and time delay τc. An internal process of the CPG ‘integrates’ 
the delayed leg angle θj (t-τc) by a leaking integrator with large time constant 
τ i, which is subsequently fed to the half-center model with gain gi. The hip 
joint of each leg j is locally coupled to its own CPG. 
Our passive dynamic walker has no trunk, which has little effect on the 
motion of the legs (McGeer 1990). To still be able to control the hips 
separately, as humans do, a virtual torso is introduced: the torso is 
considered perpendicular to the ground level and immovable. The output of 
the flexor center yF and extensor center yE are amplified by the respective 
efferent gains keF and keE to form the motor signals to the muscles which 
provide hip flexion and extension. The ‘muscles’ are modeled most simple, 
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Fig. 2 The CPG model for leg j (j={r,l}). It has supra-spinal input u0 and afferent input 
of leg angle θj and angular velocity ωj, which is fed to the half-center model with gains 
gp and gd and time delay τc. The leg angle is integrated by a leaking integrator with 
large time constant τ i and is fed to the half-center model with gain gi. The half-center 
model is the basic rhythm generator, which outputs yFj and yEj are coupled to the limb 
by efferent gains keF and keE to provide a hip moment of force Mj from the torso. 
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translating the motor signals linearly to a hip moment of force Mj relative to 
the torso (j={r,l}). Supra-spinal input u0 to the CPG can be changed to 
increase or decrease the outputs of the flexor and extensor center, and thus 
the hip moments of force. 

2.3 Energy Efficiency Analysis 

In engineering the energy efficiency of a system is often defined as the ratio 
between the amount of total performed work (i.e. the sum of positive and 
negative work) and the energy expenditure needed to achieve this work. The 
efficiency η of the CPG-controlled actuation at the hips can be determined 
during one gait cycle: 
 

exp

100
W

E
η =  %  (1) 

 
with W the total amount of work performed by the hip muscles during one 
gait cycle and Eexp the accompanying energy expenditure. The work W is 
necessary to compensate for the damping losses, which are mainly caused by 
impact at heel strike.  The hip muscles of our gait model do not store energy; 
performing positive as well as negative work costs energy. Thus, the energy 
expenditure Eexp is calculated as follows: 
 

exp j j

0

( )
T

j

E M dtω
 

=   
 

∑ ∫  J j={r,l}  (2) 

 
with Eexp the energy expended during one gait cycle, T the period of the gait 
cycle, Mj the muscle moment of force about hip joint j relative to the torso, 
and ωj the angular velocity of leg j. When the signs of Mj and ωj are equal, 
positive work is done; else negative work is done. The energy efficiency ratio 
η is 100% if only positive work is performed by the hip muscles during the 
gait cycle. Note that for perfect resonance tuning in a mass-spring system 
with spring extension x and sinusoidal actuation force F, the energy efficiency 
ratio η is 100%, because the phase of the transfer function H(s)=x(s)/F(s) is 
-90° at the resonance frequency, i.e. the force F and velocity v=dx/dt are in 
phase and only positive work is performed. In a similar way, an energy 
efficiency ratio η of 100% is obtained for our CPG-controlled gait model if the 
stride frequency equals the ‘resonance frequency’ of the passive dynamic 
walker. Resonance tuning leaves the natural exchange between potential and 
kinetic energy intact: no active braking of the legs is necessary and thus only 
positive work is performed by the hip muscles. Forcing the gait model to walk 
slower or faster then its natural frequency at given gait velocity, would imply 
a control that actively brakes and thus performs negative work. 
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The efficiency ratio η is a good measure of the resonance tuning capabily of 
the CPGs. However, it gives an incomplete view on the energy efficiency of 
walking. Even if the efficiency η of the hip muscles is 100%, a certain 
distance can be walked with different energy expenditures. For our simple 
gait model, this is caused by different collision losses at heel strike (i.e. the 
negative work done by the dampers Bx and especially By) for different gait 
qualities (i.e. different stride length S and/or stride period T). Therefore, the 
energy expenditure per unit distance walked Em is also determined 
(normalized to mass). In the field of bio-mechanics this is a widely used 
measure for the energy efficiency of walking (Koopman 1989; McMahon 
1984). The energy Eexp expended during one gait cycle is divided by the 
stride length S and total mass (2mf + mh) of the gait model to yield Em: 
 

( )
exp

m
f h2

E
E

S m m
=

+
 J/(kgm)  (3) 

 
To perform the above-mentioned energy efficiency analysis, periodic cycles of 
the gait model have to be found and analyzed. This is done with help of 
Poincaré mapping as discussed thoroughly in Ch. 6 (Verdaasdonk et al. 
2007a). 
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3. Results 

3.1 Passive Dynamic Walking 

The gait model (Fig. 1) is able to walk down certain slopes α without any 
control, i.e. it is a passive dynamic walker (Sect. 2.1). The gravitational 
energy received by the passive dynamic walker – i.e. the work Wg performed 
by gravity – is proportional to the slope α and equals (2mf+mh)g sin(α) Joule 
per meter walked. Figure 3 shows the stride length S, stride period T and gait 
velocity v against downward slope α for all stable gait solutions. Since the 
stride period T is almost invariant with regard to the slope, which was also 
shown by Kuo (Kuo 2002) and Garcia et al. (Garcia et al. 1998), increasing 
gait velocity v=S/T implies increasing stride length S.  A larger stride length 
means more mechanical work has to be done by gravity to redirect the hip 
mass velocity at heel strike (Donelan et al. 2002), which corresponds to a 
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Fig. 3 Passive dynamic walking for increasing slope α. The top graph shows the stride 
length S, the middle graph shows the stride period T, and the bottom graph shows the 
gait velocity v. At steep slopes there is a route to chaos, which is depicted in Fig. 4. 
Beyond slopes of 0.0114 stable walking is not possible. 
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steeper slope in passive dynamic walking. Hence, the gait model walks faster 
down a steep slope than a shallow one. 
Stable passive dynamic walking is not possible for slopes below 6.44·10-4 rad, 
because in our model the foot of the stance leg sinks a little into the ground, 
which is modeled as a spring-damper. For very small stride lengths this 
sinking depth is relative large compared to the angle between both legs at 
heel strike. Therefore, after heel strike, the foot of the former stance leg does 
not lift above ground level and the walker stumbles and falls. For higher 
values of the slope the walker undergoes a series of bifurcations, which 
eventually lead to chaotic gait. Stable gait is not possible beyond slopes of 
0.0114 rad. 
Figure 4 shows the route to chaos in terms of the maximal segment angle of 
the right leg θr during one gait cycle. This route to chaos resembles the ones 
in (Garcia et al. 1998) and (Goswami et al. 1998), except that it starts of 
with a pitchfork bifurcation instead of a period doubling bifurcation. This is 
due to the different way in which gait is modeled in this study. Our model is a 
continuous-time model in which a complete stride (i.e. two steps) 
corresponds to the smallest possible recurrent period, while for the models in 
(Garcia et al. 1998) and (Goswami et al. 1998) one step is the smallest 
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Fig. 4 Route to chaos. The passive dynamic walker initially exhibits a pitchfork 
bifurcation – marked PF – and subsequently period doubling bifurcations – marked PDn

– for increasing slope α. The zoom-in in the upper-left corner shows up to the fourth 
period doubling bifurcation and the estimated slope αchaos at which chaotic gait begins 
(for n�∞). 
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possible recurrent period, as they swap the indices of the legs after each heel 
strike (i.e. right becomes left and vice versa). Thus, the pitchfork bifurcation 
in the bifurcation diagram corresponds to the slope beyond which 
asymmetrical gait, i.e. a limping gait, emerges. Figure 4 shows a zoom-in up 
to the fourth period doubling bifurcation. The onset of chaos can be 
estimated with the help of Feigenbaum’s universal scaling law (Feigenbaum 
1978), which is shown in Eq. 4. 
  

 
PD,n PD,n-1

PD,n+1 PD,n

lim
n

α α
δ

α α→∞

−
=

−
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in which αPD,n is the slope at which the nth period doubling bifurcation occurs 
and δ is the Feigenbaum constant, which has a value of 4.6692….  
From Eq. 4 the asymptotic value of the slope where infinite period doubling 
bifurcations have occurred can be derived. This is the slope αchaos beyond 
which chaos emerges (Eq. 5). 
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By filling in Eq. 5 for n=4 a rough estimate of αchaos=0.0103 rad is obtained. 
Since the stride frequency of the passive dynamic walker fPDW=1/T is almost 
constant for all slopes, the walker can be thought of having a kind of 
‘resonance frequency’. Adding rotational hip stiffness Kh increases this 
resonance frequency, as is shown in Fig. 5. The stride frequency fPDW 
increases with increasing Kh, while the stride length S decreases. The graph 
shows that the gait model walks faster for a higher Kh, while the energetic 
input from gravity remains the same (α =-2.6·10-3 rad). The reason for this 
more energy efficient gait is that energy is buffered in the hip springs, 
thereby decreasing the stride length and accompanying collision costs. 
The resonance frequency  
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of the swing leg – that is, if it is swinging freely as a single hanging pendulum 
– is higher than the stride frequency fPDW (see Fig. 5), because the swing leg 
covers more than half a period during the swing phase. The swing leg starts 
with a negative angular velocity to clear the ground, subsequently becomes 
positive to swing forward and becomes negative again just before heel strike 
(see Fig. 6). Actually, half a period (i.e. from zero angular velocity to zero 
angular velocity) of the swing phase is shorter than half a period of the free 
hanging pendulum. This higher ‘resonance frequency’ of the swing leg during 
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Fig. 5 Passive dynamic walking for increasing hip stiffness Kh. The top graph shows the 
stride length S, the middle graph shows the stride frequency fPDW (solid line) versus the 
resonance frequency of the swing leg fpend as free hanging pendulum (dashed line), and 
the bottom graph shows the gait velocity v.  
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Fig. 6 Comparison of CPG-controlled walking (black lines) with passive dynamic 
walking (grey lines) for (a) no hip springs (Kh = 0 Nm/rad) (b) maximal spring 
constant (Kh = 61.05 Nm/rad). Time series of the angle θr, angular velocity ωr and the 
muscle moment of force Mr of the right leg are shown during one gait cycle. 
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gait is caused by the gravity-induced initial deceleration and subsequent 
acceleration of the hip mass to which the swing leg is hinged. The ‘resonance 
frequency’ of the swing leg during gait becomes closer to the resonance 
frequency of the free hanging pendulum if hip springs are added, because the 
exchange of energy between the hip springs and the large hip mass (i.e. the 
potential energy in the springs is in counter-phase with that of the hip mass) 
flattens the velocity profile of the stance leg (compare angular velocity ωr in 
Fig. 6a with that in Fig. 6b), and thereby decreases the deceleration and 
acceleration of the hip mass. 

3.2 Energy Efficient CPG-Controlled Walking by 

Resonance Tuning 

In this section the ability of the CPG to provide energy efficient gait by tuning 
into the resonance frequency of the passive walker is investigated. CPG-
controlled walking at level ground is compared to the stable gait solutions of 
passive dynamic walking, shown in the previous section (see Fig. 5), for the 
same range of hip stiffness values Kh. The strength of afferent feedback gp – 
and by that gd and gi (see App. C) – is adapted for all gait solutions, in such a 
way that the gait velocity matches that of passive dynamic walking for all 
values of Kh. This is done to dispose of the weak dependence of the stride 
frequency on gait velocity. Figure 7 compares the stride frequency 1/T of 
CPG-controlled walking (solid line) to that of passive dynamic walking (dotted 
line) for the above-mentioned range of Kh values, while Fig. 8 plots the 
accompanying energy efficiency. The two most extreme cases are depicted in 
Fig. 6, which compares the time series of one gait cycle of CPG-controlled 
walking (black lines) with passive dynamic walking (grey lines) in case of no 
hip stiffness (Fig. 6a) and maximal hip stiffness (Fig. 6b). Below we discuss 
the results in detail. 
Figure 7 shows the entrained stride frequency 1/T to equal the frequency of 
passive dynamic walking fPDW very well. However, for stride frequencies 
below the endogenous frequency fCPG – i.e. the eigenfrequency of the CPG, 
which is 0.62 1/s for the parameter settings in this study – there are slight 
deviations (best visible in Fig. 7 by looking at S, as v=S/T is constant for 
given fPDW). The top graph of Fig. 8 shows that this slight deviation from 
perfect resonance tuning at low stride frequencies causes the energy 
expenditure Em of the CPG-controlled muscles (black solid line) to be 
somewhat higher than the work Wm (grey solid line) they perform. This is 
expressed by the efficiency η (see (1), Sect 2.3) in the bottom graph of Fig. 
8, which has its minimum of 96.9% at the lowest stride frequency (i.e. Kh=0 
Nm/rad). The accompanying time series of one gait cycle of CPG-controlled 
walking in Fig 6a (black lines) shows that just before heel strike and just 
after toe-off, the moment of force Mr is indeed a short period of time out of 
phase with the angular velocity ωr, thus performing negative work. Figure 6b 
shows that for the highest considered stride frequency (i.e. Kh=61.05 
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Fig. 7 Resonance tuning for same speed as passive dynamic walker (Fig. 5). The top 
graph shows the stride length S, the middle graph shows the stride frequency 1/T, and 
the bottoms graph shows the afferent strength necessary to maintain speed, relative to 
the default CPG. 
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Fig. 8 Energy and work for the gait solutions shown in Fig. 7. The top graph shows the 
energy expenditure Em of the muscles (solid black line) and their performed work Wm

(solid grey line) versus the work Wg done by gravity in case of passive dynamic 
walking (dotted grey line). The middle graph shows Em and Wm in case of no derivative 
and integral feedback to the half-center model (dashed black and grey lines, 
respectively) and in case of – besides the lack of integral and derivative feedback – the 
absence of time delay τc (dashed-dot black and grey lines, respectively); both are 
plotted versus Wg (dotted grey line). The bottom graph shows the accompanying 
efficiency η of the muscles in CPG-controlled walking (same legend applies as in top 
and middle graph). The endogenous frequency fCPG is shown by a vertical line. 
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Nm/rad), Mr is only a very short period of time – just before heel strike – out 
of phase with ωr, giving a η of 99.4%. The small differences in work Wm 
performed by the CPG-controlled muscles (solid grey line) and work Wg 
performed by gravity for passive dynamic walking (dotted grey line) – shown 
in the top graph of Fig. 8 – can be explained by small differences in the stride 
length S and the swing leg’s angular velocity at heel strike. At low stride 
frequencies, the foot mass looses more kinetic energy at heel strike in CPG-
controlled walking than in passive dynamic walking (see zoom-in of ωr in Fig. 
6a), while it is vice versa at high frequencies. This causes Wm to be smaller 
than Wg for high stride frequencies and higher than Wg for low frequencies, 
with the exception of the lowest frequencies. At the lowest stride frequencies 
the smaller stride length in CPG-controlled walking means smaller collision 
losses, which cause Wm to be smaller than Wg. 
Above-mentioned results show that the CPG is able to control gait in an 
energy efficient way by resonance tuning. The type of afferent feedback to 
the half-center model is important in achieving this. To show the influence of 
integral and derivative feedback of the legs’ angles to the half center model, 
we also performed simulations without these types of feedback. The dashed 
line in Fig. 7 shows the entrained gait solutions when there is no feedback of 
angular velocity or the integrated angle (i.e. gd=gi=0), again with the 
afferent strength adapted to match the passive dynamic walking velocities. 
The influence of integral feedback shows at low frequencies. Without it, the 
stride frequency 1/T deviates substantially from fPDW below fCPG. Walking 
without hip stiffness is no longer possible (the minimal Kh for stable gait is 
0.05). Even at and beyond fCPG small deviations are present. This poor 
resonance tuning behavior causes to drop the efficiency η of the muscles to a 
minimum of 66.8% for the lowest stride length (bottom graph, Fig. 8). 
Although Wm is smaller than Wg at low frequencies – merely due to smaller 
stride lengths – the bad efficiency causes Em to be larger than Wg (middle 
graph, Fig. 8). The influence of derivative feedback shows at high 
frequencies. Although without derivative feedback 1/T is only slightly lower 
than fPDW at high frequencies (top graph, Fig. 7), the efficiency η goes down 
to 58.3% for the highest stride frequency. This shows that η is a better 
measure for resonance tuning than the entrained stride frequency itself. By 
increasing the afferent strength significantly (bottom graph, Fig. 7), the 
entrained frequency comes close to fPDW, giving a false sense of good 
resonance tuning behavior, while in fact the energy expenditure is very high 
(middle graph, Fig. 8). The dashed-dot lines in Fig. 7 and 8 show simulations 
for which – besides the integral and derivative afferent feedback – the time 
delay τc in the loop coupling the CPGs to the limbs is absent (i.e. 
gd=gi=τc=0). These show almost perfect resonance tuning at high stride 
frequencies with a minimum efficiency η of 99.97% at the highest stride 
frequency. Hence, these results clearly show that velocity feedback is 
necessary to compensate for the time delay in the loop, just as in rhythmic 
single limb movement (Ch. 3 and 4; Verdaasdonk et al. 2006; Verdaasdonk 
et al. 2007b). At low stride frequencies, the absence of time delay makes the 
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resonance tuning worse with a minimum efficiency η of 62.5% at the lowest 
stride frequency. Moreover, a minimum Kh of 0.15 Nm/rad is necessary to 
obtain stable gait.  
 
The performance at low stride frequencies is worse, because absence of time 
delay means absence of extra phase lag in the feedback loop to the half-
center model. Extra phase lag is necessary for frequencies below the CPG’s 
endogenous frequency to obtain resonance tuning (for a detailed explanation, 
see Ch. 3). In fact, this is the reason that integral feedback is necessary for 
achieving energy efficient walking at low stride frequencies. 
Figure 9 shows the gait solutions for increasing time delay in case there is no 
velocity feedback (i.e. gd=0), default velocity feedback (i.e. gd=0.08gp) and 
velocity feedback for which the strength is linearly dependent on the size of 
the delay (i.e. gd=0.08gpτc/50·10-3). We start off with the gait solution of 
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Fig. 9.  Compensation of time delay by velocity feedback. The top graph shows the gait 
velocity v, the middle graph shows the muscles’ energy expenditure Em and their 
performed work Wm (black and grey lines, respectively), and the bottom graph shows 
the muscle efficiency η.  The dotted lines represent gait solutions obtained without 
derivative feedback to the half-center model (i.e. gd = 0), the solid lines represent gait 
solutions for the default velocity feedback (i.e. gd = 0.08gp), and the dashed lines
represent gait solutions for velocity feedback with strength proportional to the time 
delay τc in the loop (i.e. gd=0.08gpτc / 50·10-3). 
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Figs. 7 and 8 belonging to a stride frequency fPDW of 2.0 1/s (i.e. Kh is 10 
Nm/rad) and leave the accompanying afferent positional gain gp at the 
constant value of 19.0 for all simulations. The default velocity feedback (solid 
lines) shows that the value of gd relative to gp is laid out to compensate 
phase lags of time delays around 50 ms. The efficiency η is close to 100% 
and the gait velocity v is close to that of passive dynamic walking as long as 
the time delay is close to 50 ms. Much lower and much higher time delays 
will cause bad resonance tuning behavior, with accompanying bad efficiency 
and lower gait velocities. The energy expenditure in these cases is less, 
because the stride length S diminishes with v, which means lower collision 
costs. No velocity feedback (dotted lines) causes the efficiency η to be near 
100% only in case of no delay. Even in that case the gait velocity v is lower 
than in passive dynamic walking, because the afferent gain gp is not adapted 
to match the latter velocity. Hence, the CPG gets less total afferent input (as 
there is no velocity feedback) and will walk with the same stride frequency, 
but with lower stride length S and therefore with less energy expenditure Em.   
The combination of positional and velocity feedback is similar to a PD-
controller and gives maximal 90° phase lead. As the phase lag of the time 
delay increases with frequency (Hτ=e-jωτ), there is a limit to the time delay, 
which can be compensated. The maximal time delay for which stable walking 
is possible is 0.244 s and is shown by the dashed lines in Fig. 9, which 
represent velocity feedback for which the strength is linearly dependent on 
the size of the delay. The efficiency η shows that for time delays up to 0.15 s 
very good resonance tuning behavior – and by that, energy efficient walking 
– is achieved by velocity feedback to the CPG.  
It is noted that – based on a vast amount of simulations, many not discussed 
in this paper – the route to chaos is not encountered for CPG-controlled 
walking. The CPG seems to prevent or retard this route to chaos. Stable 
symmetric gait solutions exist for a certain parameter space and become 
unstable almost immediately after leaving this parameter space, sometimes 
preceded by asymmetric gait and one or two period doubling bifurcations. 
Thus, it could be that the route to chaos is present, but is compressed by the 
CPG into a very small area of the parameter space. 

3.3 Velocity Control 

For a given hip stiffness Kh, increasing gait velocity v of the CPG-controlled 
walker is achieved by increasing the energy expenditure of the muscles. This 
can be done by increasing the afferent gain gp, the efferent gain keE, or the 
supra-spinal input u0. Figure 10 shows the range of hip stiffness values Kh at 
which stable gait is possible for afferent strengths of 2, 20, 60, and 100. For 
a given hip stiffness Kh, the velocity v is increased by increasing gp (top 
graph). The increasing gait velocity is achieved by increasing the stride 
length S (second graph), because the CPG tunes into the resonance 
frequency of the walker regardless of the afferent strength gp (within certain 
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Fig. 10 Changing gait velocity by adaptation of afferent strength gp for a range of hip 
stiffness values Kh. Shown are from top to bottom graph: gait velocity v, stride length 
S, stride frequency 1/T, energy expenditure Em, and muscle efficiency η. The gait 
solutions are shown for an afferent strength gp of 2 (solid black lines), 20 (dashed-dot 
black lines), 60 (solid grey lines), and 100 (dashed black lines). 
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limits), and is accompanied by a higher energy expenditure Em (fourth 
graph). The fact that the CPG tunes into the walker’s resonance frequency for 
all afferent strengths gp is shown by the overlapping plots of the stride 
frequency 1/T versus the hip stiffness Kh (middle graph). This good 
resonance tuning behavior is also shown by the muscle efficiency η (bottom 
graph). The range of resonance frequencies (i.e. range of values of Kh) for 
which stable walking is possible increases with increasing gp, although the 
lowest possible stride frequency becomes somewhat higher. For given 
afferent strength gp, higher hip stiffness Kh does not affect the gait velocity v 
much (top graph), as long as Kh is in the range where resonance tuning 
behavior is almost perfect, i.e. η close too 100% (bottom graph). However, 
the energy expenditure Em is much less for higher Kh, because of the lower 
collision costs associated with smaller stride lengths S. 
Hence, the stride length S is increased or decreased by increasing or 
decreasing the afferent gain gp, the efferent gain keE, or the supra-spinal 
input u0, while the stride frequency 1/T stays close to the mechanical 
resonance frequency of the walker due to the resonance tuning behavior of 
the CPG. This  
 
way, a range of gait velocities v can be achieved by changing only one 
parameter. For example, for given gp of 20 and Kh of 5, a range of gait 
velocities is achieved from 0.28 up to 0.75 m/s – with accompanying range of 
stride lengths from 0.20 to 0.54 m – by changing the supra-spinal input u0 
from 0.12 to 8.19.  
The range of velocities, for which stable gait is possible, can be made much 
larger by increasing and decreasing the walker’s resonance frequency with 
gait velocity. The resonance frequency can be increased by increasing the hip 
stiffness Kh by a local positional feedback, just as a stretch reflex can 
increase the muscle stiffness (Ch. 2; Verdaasdonk et al. 2004a) and by that 
the resonance frequency of a limb (Ch. 4; Verdaasdonk et al. 2007b). Thus, 
by making the local positional feedback gain dependent (e.g. proportionally) 
on gp, keE, or u0, a large range of gait velocities can be obtained by 
controlling only one parameter (gp, keE, or u0). It is noted that controlling Kh 
in this way costs energy, as the obtained resonance frequency differs from 
the real mechanical resonance frequency. This additional energy expenditure 
is not taken into account in the results of this study, where Kh is considered 
to be an energy conserving spring. 
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4. Discussion 

4.1 Robustness 

In this study we have focused on the energy efficiency of CPG-controlled 
walking. CPGs also play an important role in the recovery from small and 
medium-sized perturbations, and even from large perturbations, as was 
shown for a model of rhythmic arm movement in Ch. 4 (Verdaasdonk et al. 
2007b). In Ch. 6 (Verdaasdonk et al. 2007a) we discuss the trade-off 
between energy consumption and robustness for a CPG-controlled bipedal 
walking model with ‘human-like’ mass distribution. 

4.2 Conclusion 

This study has shown that the principles of energy efficient rhythmic single 
limb movement by CPGs also apply to walking. The CPG achieves to control 
gait energy efficiently by tuning into the resonance frequency of the passive 
dynamics of the walker. Our CPG model on the one hand might elucidate how 
humans achieve energy efficient walking, and on the other hand can be used 
as (part of a) gait controller in applications such as walking robots or 
powered walking orthoses. 
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Appendix A. Ground reaction forces 

The ground reaction force for a foot standing on the ground, FGjd, is modeled 
by viscous damping in both x- and y-direction and stiffness only in y-
direction: 
 

Gjx x fj

y fj y fj fj

Gjy
y fj

,

if 0

else

F B x

B y K y y
F

K y

= −

− − <
= 

−

�

� �   (A.1) 

 
with Bx, By and Ky constant damping and stiffness factors, chosen such that 
an overdamped contact with negligible slip is obtained, xjf and yjf the 
coordinates of the feet relative to a base point on the ground. The indices j 
and d have the following meaning: 
j = {r,l} leg index 
d = {x,y} direction ground reaction force 
 
Since our walker does not have knees, ground-clearance during swing phase 
must be provided artificially. This is accomplished by a ground reaction force 
Gfjd at foot j, stated as follows: 
 

Gjd
fjd

if leg  in Stance Phase

0  else

F j
G


= 


            (A.2) 

 
A leg is said to be in stance phase when its foot is below ground level and its 
angular velocity is below a threshold value ωG=0.1 (yfj<0 & ωj<ωG). The 
threshold value ωG is used because at very low speeds, heel strike (the 
beginning of stance phase) can occur at slightly positive angular velocity. 
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Appendix B. Lagrange’s equations for the 

passive dynamic walker 

The indices j, n and d in this appendix have the following meaning: 

j = {r,l} leg index 

n = {1,2,3,4} generalized coordinate index 

d = {x,y} direction ground reaction force 

 
The generalized coordinates q are defined as the position of the hip mass mh 
in the global system, (xh, yh), and the angles of the right and left leg relative 
to the vertical (i.e. segment angles), θr and θl:  
 

h h r l

T
x y θ θ =  q   (B.1) 

 

The positions of the feet fr fr fl fl

T
x y x y=   fx  are expressed in q as follows: 

 

( )
fj h leg j

fj h leg j

( ) sin( )
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= −
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The scalar kinetic energy function T(q) is given by: 

2 2
h h h h

2 2
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1 1
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The scalar gravitational potential energy function Vg(q) is given by: 

( )

( )

2
h h h h j

f fj fj

1
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j
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q
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The foot-ground contact forces Eq. A.2 are written as vector 

frx fry flx fly( )
T

G G G G =  f fG x , which is expressed in local foot coordinates xf 

and must be transformed to an expression in generalized coordinates before 
entering Lagrange’s equations of motion: 
 

4
k

n k
1 n

( , ) ( )
qk=

∂
=

∂
∑ f

f f

x
G q q G x�   (B.5) 
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Lagrange’s equations of motion are now: 
  

n n
n n n

+
d T T V

dt q q q

 ∂ ∂ ∂
− + = 

∂ ∂ ∂ 
M G

�
  (B.6) 

  
with M the vector of generalized forces, comprising the CPG-controlled hip 
moments of force (Eq. C.8): M=[0 0 Mr Ml]

T. 

Parameters 

mh  = 1.0 kg hip mass 
mf  = 0.04 kg foot mass 
lleg  = 1.0 m leg length 
g  = 9.81 m/s2 gravity constant 
Ky = 1·105 N/m ground stiffness in y-direction 
By  = 1·104  Ns/m ground damping in y-direction 
Bx  = 1·106  Ns/m ground damping in x-direction 

Variables with default values 

α = 2.6·10-3 rad ground slope 
Kh = 0  Nm/rad rotational stiffness of the hip 
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Appendix C. Central pattern generator 

The dynamics for the CPG coupled to leg j (j={r,l}) are given by the following 
equations: 

( )(

( ) ( ))

Fj 0 Fj Fj Ej p j c
r

d j c i j c

1
u u u v wy g t

g t g t

β θ τ
τ

ω τ ϕ τ
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  (C.1) 

 

( )Fj Fj Fj
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1
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( )Ej Ej Ej
a

1
v y v

τ
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( )j i j j
i

1
ϕ τ θ ϕ

τ
= −�   (C.5) 

 
in which uFj, vFj, uEj and vEj are the state variables of the flexor (‘F’) and 
extensor (‘E’) centers and φj is the integral of the angle θj. Integration of the 
angle θj is assumed to be performed by an internal process of the CPG, which 
is modeled as leaking integrator (pole at –1/τ i see Eq. 18). 
 
The outputs of the flexor and extensor centers, yFj and yEj, are given by: 

( )Fj Fjmax 0,y u=   (C.6) 

( )Ej Ejmax 0,y u=   (C.7) 

The actuation moments of force of our CPG-controlled hip muscles are then 
given by: 
 

j eE Ej eF FjM k y k y= −   (C.8) 

Parameters 

τr  = 0.18  s rise time constant 
τa  = 0.36 s adaptation time constant 
τ i  = 10.0 s time constant for leaking integrator  
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β  = 2.0   strength adaptation effect 
w  = 2.0   strength of reciprocal inhibition 
keE  = 0.04   efferent gain associated with extensor center 
keF  = 0.1keE   efferent gain associated with flexor center 

Variables with default values 

u0  = 1.0   tonic input from supra-spinal centers 
gp  = 2.0   feedback strength of limb angle 
gd  = 0.08gp   feedback strength of limb’s angular velocity 

gi  = 2π fCPGgp  feedback strength of integrated limb angle 
τc  = 50·10-3 s time delay in feedback loop 
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Abstract 

Human gait is at the same time energy efficient and robust against all sorts 
of perturbations (e.g. stumbling, getting pushed). For decades, 
biomechanical engineers try to model human gait by roughly two different 
approaches. The static approach is based on maintaining a kind of postural 
stability (i.e. static) by keeping the center of mass above the foot support 
area of the stance leg at all times. These bipedal walking mechanisms are 
robust for predefined perturbations, but in general consume a lot of energy. 
The dynamic approach is based on exploiting the natural dynamics of the 
biped as in ballistic walking. These walkers are energy efficient, but in 
general not robust. The goal of this study is to investigate to which extent a 
Central Pattern Generator (CPG) can attribute to the reconciliation of high 
energy efficiency and high robustness, seen in human walking. To achieve 
this goal, the limits regarding energy efficiency and robustness against 
perturbations are explored for a bipedal walking model. The model consists of 
two rigid legs with human-like mass distribution and is controlled by a 
Central Pattern Generator (CPG). The CPG is tightly coupled to the legs 
through sensory afferents and motor efferents and as such is able to 
generate stable locomotion. The exploration is carried out by optimizing the 
afferent and efferent gains with respect to energy efficiency and robustness. 
For the latter, our walker is subjected to two types of perturbations: its swing 
leg is pulled backwards during midswing and it encounters sudden ground 
level changes. With this approach gaits are found that are almost three times 
as efficient as human walking, as well as gaits that enable recovery when the 
swing leg is deprived of 70% of its angular velocity during midswing. 
Symmetry-breaking bifurcations, i.e. pitchfork bifurcations, are present 
throughout the parameter space and represent transitions from symmetric to 
asymmetric gait. For both symmetric and asymmetric walking, solutions with 
large stability regions are found. A strict trade-off between energy efficiency 
and robustness exists, which is most evident for the symmetric solutions. It 
could be that humans ‘choose’ the strength of the afferent and efferent 
pathways to and from the CPG as circumstances may require. That way, one 
would employ a more robust but less energy-efficient gait solution for uneven 
terrain compared to flat terrain.  
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1. Introduction 

In everyday life, walking is something we do unconsciously. That is, we are 
not continuously aware of all that goes on in our body when we take a next 
step. Yet, we seem perfectly able to establish an energy efficient gait and 
maintain it while withstanding a wide range of perturbations. Unraveling the 
way nature achieves such a high-quality gait has been a research topic for 
many years, and will be for many years to come. From an anatomical point of 
view, several parts play a role in locomotion. Mechanically, the skeleton with 
its segments and joints defines the possible movements, while the muscles 
supply the power to move. For the nervous system, a distinction is made 
between the Central Nervous System (CNS) and the Peripheral Nervous 
System (PNS). The human CNS consists of the brain and spinal cord. The 
PNS is further divided into the neural pathways leading to the CNS, the 
sensory afferents, and pathways leading from the CNS, the motor efferents. 
As such, the sensory afferents are said to feed back information about the 
mechanical state and the environment to the CNS, whereas the motor 
efferents carry signals from the CNS to the muscles. 
 
The way information is processed by the CNS and the PNS is still open to 
debate. Inspired by the obvious oscillatory nature of locomotion, a promising 
line of research suggests a Central Pattern Generator (CPG), for the legs 
located in the lower part of the spinal cord, as a crucial part of the CNS. The 
CPG is often described by the half-center model (Brown 1911): two 
reciprocally inhibiting groups of neurons, together generating an oscillating 
signal by firing alternatingly. Through the motor efferents, one group induces 
activity in the flexor muscles and the other in the extensor muscles. 
Information about the resulting motion is fed back through the sensory 
afferents to the CPG. 
 
Various researchers have provided evidence for the existence of a locomotor 
CPG, mostly by experiments on cats (for review, see MacKay-Lyons 2002). 
Most of these studies built upon the pioneering work of Brown (1911), whose 
experiments showed that cats with a transected spinal cord and with cut 
dorsal roots still showed rhythmic alternating contractions in ankle flexors 
and extensors. MacKay-Lyons concluded that the existence of locomotor 
CPGs in animals has been established beyond reasonable doubt, but the 
relative importance of CPG activity – if any – in the control of human 
locomotion remains to be elucidated. 
 
In the field of biomechanical engineering, several model studies have shown 
that it is indeed possible to generate stable bipedal gait using a CPG (e.g. 
Taga 1995a; Taga et al. 1991; Verdaasdonk et al. 2004). The CPG model 
used for these bipedal walkers is based on the work of Matsuoka (1985; 
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1987), who constructed a mathematical model of a neural oscillator. This 
model incorporates key neural features like the buildup of the neuron’s 
membrane potential – causing the neuron to fire – and a fatigue effect that 
decreases the neuron’s firing rate in time. Taga (1995b) and Taga et al. 
(1991) restricted their research to an assessment of stability. We will 
investigate the gait’s energy efficiency as well, regarding both energy 
efficiency and robustness against perturbations as two key determinants of 
the quality of gait (Sect. 2.3).  
 

Most attempts to model human gait focus on robustness against 
perturbations or on energy efficiency. The former approach is based on 
maintaining a kind of postural stability (i.e. static) by keeping the center of 
mass above the foot support area of the stance leg at all times. Based on 
trajectory control, these static bipedal walking mechanisms are robust for 
predefined perturbations, but are not fast and nor energy efficient: forcing a 
system far from its natural motion costs a lot of energy (e.g. compare the 
energy cost of moving a pendulum in its eigenfrequency with moving it in a 
higher or lower frequency). Nowadays, a lot of bipedal gait robots are based 
on a stability criterion termed Zero Moment Point (ZMP). The ZMP concept 
(Vukobratovic and Borovac 2004) is an extension of the static walking 
concept towards a more dynamic gait solution. However, these bipeds are 
still trajectory controlled and therefore in most cases not energy efficient: the 
chance that the trajectory, calculated on basis of the ZMP criterion, comes 
close to the natural motion of the biped is very slim indeed. The latter 
approach is based on exploiting the natural dynamics. These ballistic walkers 
(e.g. Mochon and McMahon 1980) use gravity to their advantage by making 
use of the natural exchange of potential and kinetic energy of their body with 
pendulum-like limbs; the swing leg acts as a hanging pendulum, while the 
stance leg (with the body mass on top) acts as an inverse pendulum. This 
way, energy efficient gait is obtained, but the lack of control in these bipeds 
results in poor stability properties; only small perturbations are needed to 
make the biped fall. The most extreme type of ballistic walking is passive 
dynamic walking (Garcia et al. 1998; McGeer 1990). These walking 
mechanisms only need a small slope to sustain their walking cycle, but have 
such poor stability properties (Schwab and Wisse 2001) that getting them 
started is a science on its own. 
 
The goal of this paper is to investigate if Central Pattern Generators (CPGs) 
can provide the control that ballistic walkers lack, giving high robustness 
against perturbations, but without sacrificing much of the energy efficiency 
that characterizes ballistic walking. It is investigated for our CPG-controlled 
gait model if high energy efficiency and high robustness can coexist as in 
human walking, and if a trade-off between the two exists. To achieve this 
goal, it is investigated how the energy efficiency of CPG-controlled bipedal 
gait and its robustness against perturbations depend on the choice of afferent 
and efferent coupling strengths. We explicitly use the term robustness to 
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stress our interest in how the walker recovers from large perturbations, for 
which linear stability analysis no longer holds. Local stability will be assessed 
as well, but solely as a necessary condition for gait. 
 
The methods necessary to achieve this goal are discussed in Sect. 2. The gait 
model (Sect. 2.1) is a two-segment sagittal walker with point feet, with a 
CPG closely coupled to each leg. This coupling models the peripheral nerves: 
motor efferents translate the CPG-outputs into hip moments of force, and 
sensory afferents feed information about the state of the legs (e.g. angle) 
back to the CPG. The dynamics of motor efferents and sensory afferents are 
together addressed as coupling dynamics. In this study, the coupling 
dynamics are modeled as proportional gains. By varying these coupling gains 
different gaits result, for example gaits with different step length, step 
frequency, walking speed, energy expenditure or stability. An optimization 
routine (Sect. 2.4) is used to find settings of the coupling gains that give 
(local) optimums of energy efficient gait, robust gait, or a compromise 
between them throughout the parameter space in order to reflect the great 
variety of possible ‘high quality’ gaits. Thus, the goal of the optimizations is 
not to find the global optimum for energy efficient and robust gait, but to 
obtain an understanding of the diversity of possible gaits in terms of energy 
efficiency and robustness and the possible trade-off between these gait 
qualities. The results are shown in Sect. 3 and discussed in Sect. 4. 



CHAPTER 6 

 

166 

2. Methods 

The bidepal walking model is described in Sect. 2.1. Subsequently, the gait 
cycle analysis is treated (Sect. 2.2), necessary to calculate the quality criteria 
of gait (Sect. 2.3). Gait is considered to have two important quality 
determinants: its energy efficiency, giving an idea of how costly it is for a 
walker to maintain a certain gait, and its robustness against perturbations. 
We will restrict ourselves to two specific perturbations, namely a swing leg 
pull and a change in ground level. For both, a robustness measure is 
formulated that expresses the largest perturbation from which the walker can 
still recover. Here recovery is seen as returning to the local region of a limit 
cycle, after having been perturbed from it (see Sect. 2.2). The quality criteria 
are combined in an object function. The optimization routine is discussed in 
Sect. 2.4 for five different object function cases. These cases are aimed at 
giving gait that is energy efficient, robust, or a trade-off between energy 
efficiency and robustness. 

2.1 The bipedal walking model 

The bipedal walker is modeled as two coupled oscillators (Fig. 1). One 
oscillator is the musculo-skeletal part of our walker and is inherently 

 
 
 

 
 

Fig. 1 The two oscillators coupled via afferent and efferent coupling gains, illustrated 
for leg j (j={r,l}). Coupling dynamics are identical for both legs. The CPG has afferent 
input sj, which consists of feedback of limb angle θj and angular velocity ωj with gains 
gp and gd, respectively. The motor signals for the hip flexor and extensor muscles MFj

and MEj consists of the outputs of the flexor and extensor center yFj and yEj multiplied 
by the efferent gains keF and keE, respectively. 
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unstable. The other oscillator is the Central Pattern Generator (CPG), which is 
robust for a broad range of input frequencies. By closely coupling these two 
oscillators, the combined system will oscillate at one frequency and result in 
stable gait. The coupling of these two oscillators is given by the gains of the 
sensory afferents and motor efferents, the neural pathways associated with 
sensory feedback and motor control.  

The musculo-skeletal part 

The body of our walker consists of two rigid legs (Fig. 2). The legs are pin-
jointed at the hip and have point feet. The head, arms and trunk of the body 
(HAT) are reduced to one point mass mh, located at the hip. The inertia of the 
legs is represented by their center of mass (mr, ml) and mass moments of 
inertia around these centers of mass (Ir, Il), and agree with human-like 
inertial properties (Chandler et al. 1975). The value for the rotational hip 
joint damping (Bhr, Bhl) has been taken from Thunnissen (1993). Note that 
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Fig. 2 The musculo-skeletal part of the walker. The generalized coordinates are the 
coordinates of the HAT mass mh in horizontal and vertical direction, xh and yh

respectively, and the angles of the right and left leg relative to the vertical, θr and θl

respectively. The legs have mass mj and moments of inertia Ij (j={r,l}). The hip 
muscles actuate the legs by applying moments of force Mr and Ml on the right and left 
leg, respectively. FGr and FGl are the ground reaction forces. Note that FGl is indicated 
with a striped arrow to illustrate that this ground reaction force is zero during swing 
phase, even when the swing foot is below ground level. 
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for this segment model, stable passive dynamic walking (McGeer 1990) is not 
possible. Hence, controlled actuation is indispensable for our walker even 
when walking down a slope. 
 
Humans have control of each of their hips. To make separate hip control 
possible in such a simple model, it is necessary to introduce a virtual torso 
(not shown in Fig. 2): the torso is considered perpendicular to the ground 
level and immovable. The actuators in our model are the hip muscles, acting 
on the legs by applying a moment of force around the hip joint. For each leg, 
one muscle supplies the flexion moment of force between hip and torso while 
another, its antagonist, supplies the extension moment of force. A muscle is 
modeled as a most simple actuator, linearly translating the level of actuation 
to a moment of force.  
 
In deriving the equations of motion, the approach of Lagrange is used (see 
App. A). The equations of motion are expressed in four generalized 
coordinates, q = [xh yh θr θl]

T, in which xh and yh are the coordinates of HAT 
mass mh in horizontal and vertical directions, respectively, and θr and θl are 
the angles of respectively the right and left leg relative to the vertical. The 
contact of the walker’s feet with the ground deserves some more attention. 
The ground reaction force for a foot standing on the ground, FGjd, is modeled 
by viscous damping in both x- and y-direction and a stiffness only in y-
direction (Fig. 3 and Eq. 1). 
 

 

 
 
 

 
 

Fig. 3 Model of foot-ground contact during stance. The ground reaction force for a foot 
standing on the ground is modeled by damping Bx in the x-direction and by damping By

and stiffness Ky in the y-direction (see Eq. 1). 
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Here Bx, By and Ky are constant damping and stiffness factors, chosen such 
that an overdamped contact with negligible slip is obtained. The coordinates 
of the feet in horizontal and vertical direction are xfj and yfj, respectively. 
Damping forces in vertical (y-) direction are only present when movement of 
the foot is downwards ( fj 0y <� ). Since our walker does not have knees, 

ground-clearance during swing phase must be provided artificially. This is 
accomplished by a ground reaction force Gfjd at foot j, stated as follows: 
 

Gjd
fjd

if leg  in Stance Phase

0  else

F j
G


= 


          j={r,l}, d={x,y} (2a) 

 
For example, FGrx is the ground reaction force in x-direction for the right leg. 
A leg is said to be in stance phase when its foot is below ground level yGj and 
its angular velocity is below a threshold value ωG=0.01 (yfj<yGj  & ωj<ωG). 
The threshold value ωG is used because at very low speeds, heel strike (the 
beginning of stance phase) can occur at slightly positive angular velocity. To 
reduce calculation time, the numerical stiffness of the system is reduced by 
smoothing the discrete condition in Eq. 2a: 
 

{ }1 1 1 1
fjd Gjd s fj Gj s j G2 2 2 2( tanh( ( ))( tanh( ( ))G F c y y c ω ω= − − − −   (2b) 

 
with ‘tanh’ the hyperbolic tangent function. The constant cs determines the 
steepness of tanh and is chosen high (cs=105) to prevent a significant 
difference in simulation results when using Eq. 2b instead of Eq. 2a for the 
ground reaction force. The ground reaction force Gfjd is expressed in local foot 
coordinates and must be transformed to an expression in generalized 
coordinates before it can be used in the equations of motions (see Eq. A.5 of 
App. A). 

The central pattern generator (CPG) 

Our CPG is based on the work of Matsuoka (1985; 1987). Matsuoka showed 
that a group of neurons can achieve a stable oscillating output signal, when 
they are arranged in a mutually inhibiting network and each neuron is subject 
to fatigue. Moreover, Matsuoka gave necessary and sufficient conditions for 
the neurons to sustain this oscillatory activity. The dynamics of the CPG are 
governed by a set of first-order differential equations (see App. A). 
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In our walker, each leg is controlled separately by one CPG, consisting of two 
neurons (Fig. 4). Its activity is initiated by a supra-spinal input signal u0. 
From the moment a neuron starts firing, it starts to fatigue. This fatigue 
results in a decreasing firing rate, and accordingly in a decreasing inhibitory 
influence on the other neuron. When this inhibitory signal has reached a 
certain threshold value, the other neuron takes over and starts firing. This 
sequence repeats itself indefinitely when a (constant) u0>0 is applied, and 
will occur even when no sensory input sj is present. In the latter case, this 
CPG oscillates in its endogenous frequency with an amplitude proportional to 
u0. When sj is a nonzero periodic signal with a frequency within the 
entrainment region of the CPG, the CPG will adapt its own frequency to that 
of the input signal. The CPG is then said to be entrained by its input.  

The coupling dynamics 

Information about the state of the legs and the environment, i.e. 
proprioceptive and exteroceptive information, consists of the legs’ angles and 

u0

sj

sj

yFj

yEj

excitatory
inhibitory

Fj

Ej

 
 
Fig. 4 CPG-model for leg j (j={r,l}). The inputs to the neurons are the supra-spinal 
input u0 and the sensory inputs sj. The outputs are the firing rates yFj and yEj. 
Adaptation dynamics are shown by dashed lines, because it is an internal process 
instead of a pathway. The neuron ’Fj’ represents the flexor center and the neuron ’Ej’ 
the extensor center. 
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angular velocities relative to a vertical axis. These are denoted by θj and ωj, 
respectively. From a physiological point of view, one could say that the 
sensory apparatus of our walker consists of muscles spindles and a vestibular 
organ. For each leg, the states θj and ωj are amplified by their respective 
gains gp and gd and directly fed back to the CPG as one combined sensory 
input signal sj: 
 

j p j d js g gθ ω= +           j={r,l} (3) 

 
The CPG processes this signal and forms two appropriate output signals for 
each leg, aimed at driving the musculo-skeletal part. These signals are 
denoted yFj and yEj, implicitly stating whether they are expected to contribute 
to a flexion or an extension of the leg. Both signals are amplified by the 
respective gains keF and keE to form the efferent motor signals for the flexion 
and extension hip muscles, MFj and MEj: 
 

Ej eF Ej

Fj eF Fj

M k y

M k y

=

=
          j={r,l} (4) 

 
Following from the intrinsic properties of the CPG, these signals are never 
negative. In this paper the coupling dynamics will be characterized by the 
settings for the coupling gain vector Pcg = [gp gd keE keF]

T.  

2.2 Gait cycle analysis 

Definition of gait 

Let 1 1{( , ) }nx −= ∈ ℜ × ℜX W  be the n-dimensional state vector of the 

bipedal walker, in which: 
 
x = state variable indicating distance traveled by the walker in direction of 
gait. 
W= (n-1)-dimensional state vector containing all periodic state variables of 
X. 
 
Furthermore, let Z be the (n-1)-dimensional state space spanned by the (n-
1) periodic state variables given by W.  
 

Then, gait is considered a periodic orbit Ω(W) in Z for which x�  ≠ 0, that in 
time approaches an attracting limit cycle Γ (i.e. locally stable). The time 
associated with one period gait cycle is termed the gait cycle period T. The 
distance traveled in one gait cycle is termed the stride length S and equals 
the time integral of x over a complete gait cycle. 
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Poincaré mapping 

In determining the quality of gait, we will not follow the walker in time. 
Instead we observe its behavior only once per cycle, and take actions 
accordingly. Mathematically, a fixed one-sided Poincaré section Σ is set up 
that is transverse to the flow, and gait is analyzed each time it crosses this 
Poincaré section (Nayfeh and Balachandran 1995). This section gives a 
stroboscopic view on the system dynamics. The following section is chosen:  
 

{ }1
r r| 0, 0nΣ θ ω−= ∈ ℜ = >W  (5) 

 
In words, this section is located at midswing of the right leg. It is suitable 
since a walker will pass this section once for each gait cycle. Note that by 
fixing θr and only taking periodic state variables given by W into account, the 
dimension of the section is (n-2).  
 
Only regarding the crossings of Poincaré section reduces the system 
dynamics to a discrete Poincaré mapping P, which maps the system’s state 
from the k-th crossing to the next: 
 

k+1 k( )P=Y Y  (6) 

 
in which Y denotes the reduced state vector giving the system’s coordinates 
on this Poincaré section. The limit cycle of a certain gait is identified on the 
Poincaré section as the fixed point Y* of the Poincaré map, since it is mapped 
exactly onto itself: 
 

* *( )P=Y Y  (7) 

 

Gait approaches its limit cycle in time. On the Poincaré section this means 
that within the limits of robustness, for k→∞, Yk approaches Y*. The Poincaré 
mapping is implemented using Matlab’s event functions. A crossing of a 
Poincaré section is defined as an event taking place, at which it exits 
numerical integration. 

Local stability of gait 

By the definition of gait given above, it is a necessary condition for the limit 
cycle Γ to be an attractor, or in other words, to be at least locally 
asymptotically stable in the sense of Poincaré. This means that the 
magnitude of all eigenvalues of the linearized Poincaré map around its fixed 
point Y* should be less than one (Eq. 8):  
  

( )max imax 1
i

λ = <λ           i={1,..,n-2} (8) 
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These eigenvalues can be shown to equal the non-trivial Floquet multipliers 
λ, which are the eigenvalues of the monodromy map (Seydel 1994, pp 257-
261). Locally the value of λmax indicates the speed of convergence to the 
fixed point. The smaller its value, the faster the limit cycle is approached 
(Kuznetsov 1998; Seydel 1994).  
 

Strictly speaking, locally stable gait approaches its limit cycle in time but will 
never actually reach it. In practice the fixed point Y* is approximated when 
determining local stability: 
 

* *ˆ ≈Y Y  (9) 
 

This approximation *Ŷ  is found by evaluating the (Euclidean) distance on the 
Poincaré section between the current crossing point Yk and the previous one, 
Yk-1. This distance indicates how closely the gait has approached its limit 
cycle. If it remains below the threshold value δa=0.001 for five subsequent 
crossings, the walker is said to have reached its limit cycle. The 
approximation of the fixed point becomes the value of the last crossing point 
Yk (when |Yk-Yk-1|<δa, the walker is inside the local region of the limit cycle 
where linearization is valid. In comparison, typical values for |Yk-Yk-1| right 
after perturbation are around 1.0). Recovery from a perturbation is defined 
as reaching the concerning limit cycle afterwards (i.e. |Yk-Yk-1|<δa for five 
subsequent gait cycles). 
 

Let P̂  be the linearization of the Poincaré map P around the approximated 

fixed point *Ŷ . Then, the limit cycle represented by the fixed point Y* is said 
to be locally stable in the sense of Poincaré, if the magnitudes of all 

eigenvalues of the Jacobian of P̂  are less than one. This Jacobian is 
constructed by a numerical perturbation method: one by one, the (n-2) state 
variables that span Σ are lightly perturbed to determine their first-order 

partial derivatives. To make *Ŷ  a valid approximation of Y*, and 

accordingly iλ̂  a valid approximation of λi, the threshold value δa is kept ten 

times as small as the perturbation size. Concludingly, the necessary stability 
condition for gait translates into the following practical condition: 
 

( )max i
ˆ ˆmax 1

i
λ = <λ           i={1,..,n-2} (10) 

 

During optimization maxλ̂  is not calculated to reduce calculation time; it is 

assumed that the condition in Eq. 10 is met when locally stable gait is found. 

Explicit calculation of maxλ̂  is used in the end to validate results found.  
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Failure mechanisms 

Besides local stability, correct ground-clearance is also a necessary condition 
for valid gait. In each cycle, starting at the Poincaré section where the right 
leg is at midswing and below ground level, the correct order for the feet to 
come above ground level is right-left-left-right. When a foot fails to come 
above ground during the swing phase, or when this happens in a different 
order, the gait is invalid. Cases in which this type of failure can occur are 
those for which the angular velocity of the swing leg is too low, either 
because of low energy levels or large perturbations. In the simulation, an 
error handle is defined using event functions to make sure these cases are 
detected. Other failure mechanisms are easier to detect since gait will not be 
periodic afterwards. For instance, a walker could fall when the swing leg is 
not fast enough to take over the stance phase, or when the extension 
moment of force is not large enough to turn the stance leg forward. These 
cases are dealt with by an error handle that stops calculation if it takes more 
than 60 seconds (calculation time) to finish a gait cycle. 

2.3 Quality of gait 

This subsection shows how the quality of gait belonging to a certain set of 
neural coupling gains is measured. The quality of gait is measured by its 
energy efficiency and robustness and these measures are used as criteria in 
the object function (Sect. 2.4). The energy efficiency of gait is defined as the 
forward distance the walker can travel on a certain amount of energy 
expended. As for robustness, we are interested in how well our walker can 
recover from realistic perturbations during gait. A well-known mathematical 
stability region is the basin of attraction, defined as the set of all initial 
conditions from which a system will return to the attractor (Arrowsmith and 
Place 1990). Disadvantages of this stability measure are the long calculation 
times and the often difficult interpretation of results. For instance, a larger 
basin of attraction does not guarantee a higher robustness against a certain 
perturbation. Therefore, robustness is not expressed in limits on state 
variables, but in maximal ‘real-life’ perturbations from which the walker can 
recover. Two scalar measures are introduced: robustness against a swing leg 
pull RSLP and robustness against a change in ground level RCGL. 

Energy efficiency 

A widely used measure for energy efficiency in walking literature (e.g. 
Koopman 1989; McMahon 1984) is the energy expenditure per unit distance 
walked Em [J/(kgm)], which is normalized on body weight. As a criterium for 
energy efficiency in our optimization, we use the non-normalized version of 
Em, that is, the energy expenditure per unit distance walked Ed [J/m]. This is 
merely done to ensure large enough results of the object function (Eq. 15) 
for our optimization routine to work with (i.e. avoid rounding errors).  
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For a high quality gait, the aim is to achieve high energy efficiency and thus a 
low Ed. In the optimization the expended energy Eexp and traveled distance S 
(i.e. stride length) during one gait cycle are evaluated to yield Ed: 
 

exp
d

E
E

S
=           J/m (11a) 

 
In the simulation results (Sect. 3), we will show the normalized efficiency 
measure Em next to or instead of Ed to make comparison to human walking 
and other bipedal gait models easier (Sect. 4.1): 

 

d
m

h j2

E
E

m m
=

+
          J/(kgm) (11b) 

 

The only actuators in our walker are the hip muscles, accounting for all the 
energy expended by the walker through the work they do on the legs. Since 
our muscles do not store energy, performing positive as well as negative 
work costs energy: 

 

exp j j

0

( )
T

j

E M dtω
 

=   
 

∑ ∫           J          j={r,l} (12) 

 
with Eexp the energy expenditure from t=0 to t=T, T the period of the gait’s 
limit cycle (i.e. stride period), Mj the muscle moment of force around joint j, 
and ωj the angular velocity of leg j. When the signs of Mj and ωj are equal, 
positive work is done; else negative work is done.  

Robustness 

Robustness against a Swing Leg Pull (RSLP) 

The first method of perturbation is adapted from Forner Cordero (2003). 
Forner Cordero researched the recovery behavior of human individuals while 
walking on a treadmill, when their swing leg was suddenly pulled via a cord 
connected to the leg. He identified that perturbations applied at midswing 
were difficult to recover from.  The force Forner Cordero applied through the 
cord is translated in our setup to a perturbation moment of force Mp around 
the hip joint. It is varied in amplitude and applied at the right leg at 
midswing. Where Forner Cordero stated the duration as a period of time, we 
apply the perturbation over a fixed angular distance (0≤θr≤θp, see Fig. 5a). 
This way, the work done by the perturbing moment of force is independent of 
the swing leg’s angular velocity. The angular distance is set to 0.1 rad, 
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chosen as a compromise between a challenging perturbation and giving the 
walker time to act on it. (Forner Cordero (2003) identified longer time 
durations of perturbations as more difficult to recover from). 
 
As measure for the robustness against a swing leg pull RSLP, we use the 
maximal amount of work done by the perturbation from which the walker can 
still recover: 
 

r p

r

( )

SLP p,max r p,max p

( 0)

( )
t

t

R M t dt M

θ θ

θ

ω θ

=

=

= =∫           J  (13)  

 
in which Mp,max is the maximal constant perturbation moment of force the 
walker can handle. The robustness is determined during evaluation of the 
object function. Perturbations start with an Mp of 0 Nm and are increased 
until the walker fails to recover. 
 

Robustness against a Change in Ground Level (RCGL) 

The second method of perturbation is a sudden change in ground level ∆yG 

(Fig. 5b). The robustness margin for this type of perturbation is the maximal 
change in ground level from which a walker can still recover: 
 

CGL G,maxR y= ∆           mm (14) 

 

st
an

ce
 l

eg

 (a) (b) 

 
Fig. 5 Types of perturbation applied to gait model. (a) Swing leg pull: the right swing 
leg is perturbed by applying a perturbation moment Mp over an angle range 0≤θr≤θp.  
(b) Change in ground level: the walker is confronted by a sudden change ∆yG in 
ground level. 
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Only a decrease in ground level was applied (∆yG<0). The ground level is 
decreased in two phases, by first lowering the right ground level when the 
right leg is at midswing, and then lowering the left ground level when the left 
leg is at midswing. 

2.4 Finding energy efficient and robust gaits 

To find a variety of ‘high quality’ gaits throughout the parameter space and 
discover a possible trade-off between energy efficiency and robustness, five 
different cases of an object function will be optimized for three sets of 
optimization parameters. Thus, as mentioned in the introduction (Sect. 1), 
the goal of this optimization is not to find a global optimum. This is reflected 
in the settings of the optimization parameters (see App. B), which allow for a 
relative fast search for sub-optimal solutions throughout the parameter 
space. 

 

Since trade-off between energy efficiency and robustness is one of our 
primary concerns, these quality criteria (Sect. 2.3) are combined in one 
object function. Robustness is measured by either RSLP or RCGL: 

1 σ
d

τ σ
τ

( , ) min
E

J σ R
R

− 
=   

 
          Rτ={RSLP ór RCGL} (15) 

in which the weighing factor σ can be seen as a level of caution (0 ≤ σ ≤ 1): 
for σ=1 only robustness counts, while for σ=0 only energy efficiency counts. 
In between 0 and 1, both energy efficiency and robustness count and a 
compromise is expected.  
 

With a parameter setting – weighing factor c and coupling gain vector Pcg = 

[gp gd keE keF]
T – and a state vector given as initial conditions, evaluation of 

the object function starts with finding the corresponding gait’s limit cycle. 
When the gait is close enough to its limit cycle, the energy expenditure per 
unit distance Ed [J/m] is calculated over the last cycle (Sect. 2.3). The last 
crossing of the Poincaré section gives the starting point for the second part of 
the object function evaluation: determining the gait’s robustness against a 
perturbation. The maximal perturbation from which the walker can recover is 
found by a trial-and error method: starting with a perturbation stepsize (=1 J 
or 1 mm depending on type of perturbation), the perturbation is increased 
until the walker fails to recover. Then a smaller stepsize is taken, and the 
loop starts again from the last perturbation at which recovery was successful. 
This way, the maximal perturbation will be found in the least amount of 
trials, with an accuracy of 0.1 J or 0.1 mm. Evaluation(s) of the object 
function results in one iteration step of the optimization routine. 
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Our optimization routine will search the optimal gain settings for five different 
object function cases, each given by a different combination of weighing 
factor σ and type of perturbation τ:  

 

J(σ,Rτ) = {J(0,-), J(0.5,RSLP), J(0.5,RCGL), J(1,RSLP), J(1,RCGL)} (16) 
 
Three different sets of coupling gains (i.e. Pcg or a subset of Pcg) are used as 
optimization parameters to minimize each of the object function cases given 
in Eq. 16: 
  
a) only sensory afferents {gp, gd},  
b) only motor efferents {keE, keF},   (17) 
c) all four coupling gains {gp, gd, keE, keF}. 
 
Details on the optimization routine – including a flowchart of the evaluation of 
the object function – are stated in App. B.  
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3. Results 

Firstly, a preparatory analysis is carried out to obtain suitable starting points 
for the optimization routine (Sect. 3.1). These starting points are chosen to 
be far apart in parameter space, and yield very different results for energy 
efficiency and robustness. Secondly, the optimization results are shown 
(Sect. 3.2). Optimization has been performed for each of the five object 
function cases (Eq. 16), varying both the starting points (Sect. 3.1, Table 1) 
and the set of the neural coupling gains used to optimize the gait quality (Eq. 
17). Section 3.3 discusses the transformation from symmetric to asymmetric 
gait (i.e. limping) under variation of the neural coupling gains, including the 
corresponding change in energy expenditure and robustness. The large 
variation in energy efficiency of different gait solutions is explained in Sect. 
3.4. Finally, the robustness against large perturbations is discussed (Sect. 
3.5). 

3.1 Preparatory analysis 

Finding starting points is not a trivial task. Even assuming correct initial 
conditions, gait is unstable for a large number of gain combinations. Three 
suitable starting points for the optimization routine are shown in Table 1. 
Starting point I and II have relatively low energy expenditure (Ed), but also 
low robustness against a Swing Leg Pull (RSLP). In contrast, starting point III 
has a much higher RSLP but also relatively high energy expenditure. The 
robustness against a Change in Ground Level (RCGL) differs less significantly. 
Note that although I and II are similar in their energy efficiency and 
robustness, their gain settings differ greatly. 

3.2 Optimization results 

The three starting points (Table 1) together with the three options for gains 
to optimize (Eq. 17), yield 3·3=9 optimizations carried out for each object 
function case (Eq. 16). Inherent to fmincon’s search algorithm, each of these 
9 optimizations will generally lead to a different local optimum. Thus, in total 
9·5=45 optimizations were carried out.  
 
Table 2 gives the best local optimums found for each of the five object 
function cases, and indicates which of the 9 local optimizations led to that 
result. The results are divided in three parts. The first part contains the gain 
settings gp, gd, kee and kef corresponding to the optimums found. The second 
part shows the values of the three quality measures Ed, RSLP and RCGL at the 
optimum. The normalized energy expenditure Em is shown for reasons of 
comparison and is shown in italic. The third part shows four important gait 
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cycle characteristics: the maximal Floquet multiplier λmax indicating local 
stability (see Sect. 2.2), the stride length S (i.e. distance walked per gait 
cycle), the time period of the gait cycle T and the walking velocity v. 
Optimum A is the energy efficiency optimum, D and E are robustness 
optimums, and B and C are the optimums for a compromise between energy 
efficiency and robustness. 
 
Results show large differences in energy efficiency and robustness, scoring 
considerably better than the starting points (compare Table 2 to Table 1). 
Figure 6 illustrates the gait cycles of the optimums found by showing the 
phase diagrams for each optimum, plotting angle versus angular velocity for 
both legs. Perturbations were only applied on one side: it is always the right 

Table 1 The starting points for the main optimization round, following from the 
preparatory analysis. They are suitable since they differ considerably in gain settings 
as well as in results for energy efficiency and robustness. The results are divided in 
three parts: the suitable initial gain settings found, the values of the three quality 
measures Ed, RSLP and RCGL for these gain settings (Em, the normalized version of Ed, is 
shown in italic) and four important gait cycle characteristics: the maximal Floquet 
multiplier λmax indicating local stability (see Sect. 2.2.3), the stride length S, the time 
period of the gait cycle T and the walking velocity v. 
 

 Starting Point I II III 

gp 13.0 20.0 20.0 

gd 0.4 0.8 0.4 

kee 20 15 30 In
it

ia
l 

G
a

in
s 

kef 7.0 6.0 6.0 

 
Ed [J/m] 24.5 25.0 62.2 

Em [J/kgm] 0.33 0.33 0.83 

RSLP [J] 0.5 0.7 3.5 Q
u

a
lit

y
 

sc
o

re
s 

RCGL [mm] 1.9 2.2 2.4 

 
Max Floquet multiplier λmax 0.81 0.97 0.72 

Stride length S [m] 0.65 0.59 1.12 

Time period of cycle T [s] 1.16 1.14 1.14 

G
a

it
 c

y
cl

e
 

R
e

su
lt

s 

  

Forward speed averaged 
over cycle v [m/s] 

0.56 0.52 0.99 
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Table 2 The (local) optimums found in the main optimization round, for five different 
object function cases. The results are divided in three parts: the optimized gain 
settings found, the values of the three quality measures Ed, RSLP and RCGL at the 
optimums (Em, the normalized version of Ed, is shown in italic) and four important gait 
cycle characteristics: the maximal Floquet multiplier λmax indicating local stability (see 
Sect. 2.2), the stride length S, the time period of the gait cycle T and the walking 
velocity v. 
 
 

Optimums found A B C D E 

 

0 0.5 0.5 1 1 

Object function case J(σ,Rτ) 
  

Weighing factor (E vs R) σ 
  

Robustness measure Rτ - RSLP RCGL RSLP RCGL 

Starting point used I II I II II S
e

tt
in

g
s 

Corresponding set of 

optimized parameters 

(see Eq. 17) 
c c a a c 

 
gp 14.9 19.9 12.5 30.0 20.0 

gd 0.34 0.46 0.26 0.62 0.8 

kee 16.4 20.8 20.0 15.0 24.8 

O
p

ti
m

iz
e

d
 

g
a

in
s 

kef 5.7 10.0 7.0 6.0 15.8 

 
Ed [J/m] 21.8 77.8 27.3 68.9 107 

Em [J/(kgm)] 0.29 1.04 0.36 0.92 1.43 

RSLP [J] 0.5 9.0 1.2 7.5 1.6 Q
u

a
lit

y
 

sc
o

re
s 

RCGL [mm] 1.8 2.2 3.8 1.8 6.0 

 
Max Floquet multiplier λmax 0.95 0.53 0.62 0.62 0.53 

Stride length S [m] 0.61 0.86 0.73 0.90 0.82 

Time period of cycle T [s] 1.21 1.08 1.20 1.10 0.96 

G
a

it
 c

y
cl

e
 

R
e

su
lt

s 

 

Forward speed averaged 
over cycle v [m/s] 

0.51 0.80 0.60 0.82 0.86 
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Fig. 6 Phase plane plots of the optimized gaits shown in Table 2; symmetric (A and C) 
as well as asymmetric gaits (B, D and E) are found. For asymmetric gaits, the limit 
cycle of the right leg is dashed and denoted ‘R’; the limit cycle of the left leg is solid 
and denoted ‘L’. 
optimum A: only optimized for energy expenditure per unit distance walked (Em). 
optimum B: optimized for both Em and RSLP. 

optimum C: optimized for both Em and RCGL. 
optimum D: only optimized for robustness against a Swing Leg Pull (RSLP) 
optimum E: only optimized for robustness against a Change in Ground Level (RCGL) 
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leg that is pulled and it is always the right leg that takes the first step down 
the change in ground level. The results show that the most robust gaits to 
cope with these one-sided perturbations are asymmetric gaits. For the RSLP-
optimum (D) the right leg swings much faster than the left leg, for the RCGL-
optimum (E) the left leg swings much faster than the right leg. 
 

The results also show that optimization is difficult for this highly non-linear 
gait model: RSLP at optimum D is lower than RSLP at optimum B (7.5 mm 
versus 9.0 mm), while the highest value of RSLP is expected at optimum D. 
Furthermore, optimums C and D are found by optimizing only the afferent 
gains gp and gd, while the best results are expected when optimizing all 
gains. It seems that the parameter landscape is full of local optimums, in 
which the gradient search algorithm can easily get stuck. Although the goal 
of the optimization in this study is not to find the global optimums, it is 
interesting to know why this happens. For this reason and for a better 
understanding of the trade-off between energy efficiency and robustness, the 
behavior of the gait model is investigated in detail in the next section by 
changing one parameter over the entire space while keeping all the other 
parameters fixed. 

3.3 Symmetry-breaking bifurcations 

Under the influence of changes in gain settings, gait can transform from 
symmetric to asymmetric gait. In terms of nonlinear system dynamics, 
symmetry-breaking or pitchfork bifurcations occur (Nayfeh and Balachandran 
1995). When comparing optimum D and E with starting point II it is clear 
that such a transition can occur when changing two gains. In fact, these 
pitchfork bifurcations can be found when only one gain is changed. Typically, 
at a bifurcation the gait becomes linearly unstable; the way it looses local 
stability indicates the type of bifurcation. For a pitchfork bifurcation, the 
maximal Floquet multiplier leaves the unit circle through +1.  
 
To illustrate how energy efficiency and robustness change along such a 
pitchfork, a bifurcation diagram was constructed (Fig. 7), starting from the 
previously found optimum B, with gp as bifurcation parameter. On the left of 
the bifurcation point Q one stable symmetric branch exists, which becomes 
unstable at Q. Two stable asymmetric branches appear on the right of Q, to 
accompany the unstable symmetric branch (latter not shown in the figure). 
As an indicator of the change in system dynamics, the maximum of the 
angular velocity of the right leg, ωr,max is chosen. Note that gp is the only 
coupling parameter that is varied; the parameters gd, keE and keF remain at 
0.46, 20.8 and 10.0, respectively. 
 
The two asymmetric solutions that exist for each gp>16.3, are each other’s 
exact mirror image: movement of the right (left) leg at the upper branch 
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equals movement of the left (right) leg at the lower branch. Note that for 
gains gp lower then 11.8 and higher then 20.8 co-existing invalid gait cycles 
emerge (no foot clearance). The slightest perturbation brings the walker from 
the valid to the invalid gait cycle. These gait cycles with no robustness are 
not interesting for our study and therefore not shown. 
 
Figure 7 shows that the normalized energy expenditure per unit distance Em 
rises fairly linear with increasing gp, with almost the same slope before and 
after the bifurcation point Q. The transition from symmetric gait to 
asymmetric gait does not cause an exponential increase in energy 

Em
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Fig. 7 Energy efficiency and robustness along a pitchfork. The data from the upper 
branch is marked by black dots, the data from the lower branch with white dots. The 
pitchfork diagram was constructed starting from optimum B (indicated by the circle B
at gp=19.9) and changing gp with steps of 0.1. The maximal angular velocity of the 
right leg ωr,max during a gait cycle represents the system dynamics. The maximum 
multiplier λmax goes through 1 at the pitchfork bifurcation Q.  For λmax and the energy 
expenditure Em both branches are identical, while the pitchfork is visible for the 
robustness against a swing leg pull, RSLP, and for the robustness against a change in 
ground level, RCGL. The ‘plus signs’ in the RCGL plot show the robustness for the lower 
branch, if recovery to the other (upper) branch is considered valid. Local optimums 
along the pitchfork, for the five object function cases given by Eq. 16, are denoted     
A’ - E’ (see Table 3). 
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expenditure. The robustness against a swing leg pull RSLP is clearly higher for 
the upper branch than for the lower branch, and rises fairly linear with 
increasing gp as well. The results for the robustness RCGL against a change in 
ground level are less straightforward. Firstly, gait cycles on the lower branch 
can hardly stand any perturbation to the right of the bifurcation point, while 
these gait cycles should be able to resist higher perturbations than those of 
the upper branch from a mechanical point of view (see discussion in Sect. 
4.2). This is especially true for gains adjacent to the bifurcation point. The 
reason is that for perturbations beyond a certain threshold, recovery is 
towards the other (upper!) branch, which is not regarded as a valid recovery 
in this study. In the plot for RCGL in Fig. 7, the ‘plus signs’ indicate what RCGL 
would be for the lower branch, if recovery to the other branch would be seen 
as a valid recovery. This shows a considerable increase in robustness 
(RCGL=9.9 mm). Secondly, Fig. 7 shows a lot of irregular jumps in the 
maximal allowable perturbation RCGL for the branches to the right of the 
bifurcation point Q. A possible explanation for the occurrence of these jumps 
could be that for this type of perturbation the assumption does not hold that 
if the walker can recover from a perturbation size ∆, it can recover from all 
perturbations smaller than ∆! To test this idea, we calculated the actual 
robustness against all changes in ground level for the upper branch. This is 

Table 3 The (local) optimums found when analyzing along the pitchfork of Fig. 7. 
 

Optimums found A’ B’ C’ D’ E’ 
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shown in Fig. 8. The gray areas represent all the perturbations from which 
the walker recovers. The large gray area has a rather surprising form, with a 
sort of an oblique peak pointing backwards around gains 18.1-18.6. The large 
jump in the value for RCGL around the gain gp of 18.5 is due to this peak. 
Interestingly, there are also three smaller areas of high perturbations from 
which the walker recovers (top left corner of Fig. 8). The other two branches 
– the lower branch where recovery to the upper branch is and is not regarded 
valid – probably also have areas of recoverable perturbations with complex 
shapes. In conclusion, recovery from a certain change in ground level does 
not guarantee that the walker will recover from all smaller ground level 
changes. 
 
The optimization routine finds the maximum perturbation by first trying large 
steps and then, if not successful, smaller steps (see Sect. 2.4). In other 
words, it will sometimes find high values for RCGL while the walker cannot 
recover from smaller perturbations, because the optimization routine steps 
over the areas of non-recoverable perturbations in those cases. This is the 
reason why Fig. 7 shows many irregular jumps. 
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Fig. 8 The actual robustness against a change in ground level, RCGL, for the upper 
branch of the pitchfork shown in Fig. 7. The gray areas represent the changes in 
ground level for which the walker recovers, plotted against the same range of 
positional gains gp as in Fig. 7. Note that recovery from a certain change in ground 
level does not guarantee that the walker also recovers from all smaller changes in 
ground level. 
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The local optimums for the five object function cases (Eq. 16), when looking 
along the pitchfork where only gp is varied, are indicated with A’-E’. They are 
given in Table 3 and marked in Fig. 7. The ranges for energy efficiency and 
robustness found along this branch are comparable to those found in the 
optimization results in Sect. 3.2 (Table 2). Note that optimum A’ is 
completely at the left of the pitchfork, representing the least energy 
expenditure possible; optimum D’ is completely at the right of the pitchfork, 
giving the largest possible robustness against swing leg pulls; optimum C’ 
and B’ are compromises and lie between the extremes A’ and D’; optimum E’ 
is stuck at a local minimum close to the bifurcation point (see Sect. 4.2 for 
the reason why). 
 
The same types of pitchforks also occur when changing the value of gd. A 
fundamental difference between a gp-pitchfork and a gd-pitchfork is their 
direction: the latter has two stable asymmetric branches for low values of gd 
and one symmetric branch for higher values of gd. Recall that optimum A is 
the optimum found for energy efficiency and has a symmetric gait. When 
choosing gd as the bifurcation parameter and starting from optimum A (here 
gd=0.34, Table 2), indeed a pitchfork is found: asymmetric gait is found 
when gd is lowered past gd=-0.06. Noticeably, the value of gd can even be 
lowered to gd=-0.2 along this pitchfork before becoming unstable. 
Apparently, stable symmetric gaits are possible without any velocity 
feedback. Increasing gd from (energy) optimum A immediately leads to 
instability. Just as for the pitchfork of Fig. 7, the energy efficiency optimum 
lies on the outer boundary of the symmetric branch. For keE and keF no 
pitchforks have been found with considerable stable regions at both sides of 
the bifurcation point. Bifurcations only occur at the outer stability boundaries 
of keE and keF, where solutions become unstable almost immediately. 

3.4 Explaining differences in energy expenditure 

For suitable coupling gain settings, mutual entrainment takes place between 
the mechanical system and the CPG. Importantly, gp must be chosen much 
higher than gd (Table 2). In these cases, the sensory input sj(t) is dominated 
by the angle θj(t) of leg j (j={r,l}). Effect of this mutual entrainment is that 
both the mechanical system and the CPG oscillate in the same frequency, and 
the phase difference between the two is constant (i.e. phase-locked). This 
synchronization between actuation signals and leg movement results in 
steady and stable gait. By changing the coupling gain settings, the amplitude 
and frequency of oscillation change considerably. However, the phase 
difference largely remains the same and the CPG-output has a similar shape 
for all (stable) coupling gain settings. The actuators are active about 80% of 
the gait cycle, with an extension phase around heel strike and a flexion phase 
around toe-off. For higher frequencies, this percentage decreases. Figure 9 
shows the sensory input and actuation signals normalized to the gait cycle 
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Fig. 9 Actuation and sensory signals of the left leg for (a) symmetric gait (optimum A) 
and (b) asymmetric gait (optimum E). The sensory input sl to the CPG of the left leg 
consists of feedback of the leg angle θl and angular velocity ωl weighed by their 
respective afferent gains gp and gd. The CPG output is converted to the hip moment of 
force Ml by efferent gains. Note that the actuation cycle in both cases is of similar 
shape: an extension moment of force around heel strike (swing to stance) and a 
flexion moment of force around toe-off (stance to swing). Due to slight changes in 
timing however, both gaits differ considerably in energy efficiency (see Fig. 10). The 
dotted lines indicate heel strike (t=0.71, 0.75) and toe-off (t=0.21, 0.22). 
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and compares gaits at optimum A (Em=0.29 J/(kgm)) and optimum E 
(Em=1.43 J/(kgm)). 
 
The explanation for the large differences in energy efficiency primarily lies in 
the amount of energy expended during the first part of the extension phase, 
before heel strike. By starting the extension phase well before heel strike, the 
CPGs make sure the leg’s angles remain within acceptable limits (due to this 
active pull during end of swing phase, θmax is about 25% smaller than for a 
freely swinging pendulum of same inertia). However, due to large impact 
losses at heel strike, the energy expended during this first part of extension 
phase is canceled out and cannot contribute to an increase in step length and 
step frequency. In view of energy efficiency, the percentage of total energy 
expended during this first part of extension phase should be as low as 
possible. 
 
For increasing swing velocities, the percentage of total energy expended 
during the first part of extension phase increases exponentially. This is due to 
the occurrence of two timing changes, shown here by comparing optimums A 
and E. Firstly, heel strike timing is delayed (relative to the gait cycle): 
ths/T=0.75 for E compared to 0.71 for A; toe-off timing remains almost 
constant around tto/T=0.21 since changes in gait are primarily due to 
changes in the swing phase (i.e. swing phase determines when and where 
the foot is placed). Secondly, the extension phase starts earlier for the faster 
swinging leg: t/T=0.54 for optimum E compared to t/T=0.60 for A. 
Consequently, an increased and significant part of the extension phase falls 
before heel strike. Since this is also the part of the gait cycle where the 
highest angular velocities occur, the power supply and consequently the 
energy expenditure during this phase rises exponentially. Figure 10 shows 
that at optimum E, this phase accounts for 67% of total energy expended 
while at optimum A this is only 16%. 

3.5 Perturbation size  

The perturbations from which robust walkers can recover are quite large, as 
illustrated in Fig. 11 below for optimum B. It shows how the walker recovers 
from a Swing Leg Pull of –9.0 J, requiring 19 gait cycles to return to its limit 
cycle (for the naked eye however, recovery takes about 5 cycles). Figure 11 
also shows that the walker is being perturbed far outside the local region of 
the limit cycle, where linear stability analysis is no longer valid.  
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Fig. 10 Energy expenditure Eexp during a gait cycle for the left leg at (a) optimum A
and (b) optimum E. At A, the optimum for energy efficiency, the first part of the 
extension phase up till heel strike only accounts for 16 % of the total energy 
expenditure. For the robustness optimum E however, this is about 67 %. 
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Fig. 11 Recovery from a perturbation of the right swing leg of –9.0 J. The gain settings 
are those of optimum B. (a) Actuation and sensory signals of the right leg during 
recovery (compare with Fig. 9). The arrows indicate the direction of recovery, starting 
from the first cycle after perturbation. (b) Phase plane plot showing two 2d-projections 
of the recovery towards the gait’s limit cycle: the dashed line (towards large cycle) 
illustrates the right leg; the solid line (towards small cycle) illustrates the left leg. The 
arrow shows the large decrease of ωr from 2.7 rad/s to 0.7 rad/s due to the 
perturbation. 
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4. Discussion 

4.1 Energy efficiency 

Energy efficiency of walking is defined in this study as the forward distance a 
walker travels on a certain amount of energy expended. This definition in 
itself does not explicitly take the walker’s speed into account. By defining gait 
as having a non-zero speed, the trivial result of a ‘standing’ walker expending 
zero energy is excluded. In practice, since stable gait is only found for 
considerable walking speeds (>0.5 m/s), optimizations were not influenced 
by this trivial result. Best scores on energy efficiency were obtained at lowest 
walking speeds, but a higher energy expenditure per unit distance did not 
always correspond with a higher walking speed (compare results in Table 2). 
Aside from raised kinetic energy levels, other factors had a larger influence 
on energy efficiency. The most important cause of decreased efficiency is the 
delayed heel strike for higher angular velocities of the swing leg (Sect. 3.4), 
because more energy is lost at impact in this case (Fig. 10). 
 
It was shown that very energy efficient gait is achieved for a CPG-controlled 
bipedal walker by a suitable choice of coupling gains. An optimum for the 
energy expenditure per unit distance walked, Ed, was found at 22 J/m, which 
amounts to a normalized energy expemditure Em of 0.29 J/(kgm) for our 75 
kg walker (Table 2, optimum A). The walking velocity at this energy level is 
0.51 m/s. Our walker is able to achieve higher walking speeds as well. For 
instance, with gain settings from starting point III (Table 1) walking speed is 
0.99 m/s at an energy expenditure of 0.83 J/(kgm). Below, the energy 
efficiency of our walking model is compared with that of humans as well as 
some other bipedal walking models. 
  

Compared to human walking 

Humans are generally considered to walk very energy efficient, as shown by 
various experiments with human subjects. Waters and Mulroy (1999) 
measured oxygen uptake of their subjects, and found that metabolic energy 
expenditure for young adults is around 3.1 J/(kgm) when walking at their 
customary walking speed (around 1.3 m/s). Van der Kooij et al. (2003) 
performed an inverse dynamics analysis on data obtained from a human 
subject (80 kg, 1.9 m), walking at 1.28 m/s, and showed that the positive 
mechanical work done by joint muscles for this subject is around 0.8 
J/(kgm). When the metabolic efficiency of human muscular labor is chosen at 
an accepted value of 30%, these two studies yield comparable results for the 
amount of mechanical energy expended. 
 



 ACHIEVING ENERGY EFFICIENT AND ROBUST BIPEDAL GAIT WITH A CPG-CONTROLLED BIPEDAL WALKER  
 

193 

Since our walker is actuated by lossless moments of force, only its 
mechanical energy expenditure can be calculated. It is therefore most fair to 
compare its energy expenditure with the mechanical energy expended by 
humans, which is, according to the two sources mentioned above, about 0.8 
J/(kgm). Hence, our CPG-controlled model can walk almost three times as 
energy efficient as humans can. Note however, that our model is a 2D model 
without a trunk, while humans need energy to maintain stability in a 3D 
environment (e.g. actively swinging the arms and balancing the trunk costs 
energy). Moreover, when our model is compared with humans when both 
walking at around 1.3 m/s, our model is expected to be slightly less efficient 
than humans, though exact data for these higher walking speeds is not yet 
available.  
 
In real life, power consumption is just as important as energy efficiency. Our 
most energy efficient walker (optimum A, Table 2) has a maximal power 
consumption of about 20 W, but for the walker that is most robust against 
changes in ground level (optimum E) this is 400 W. For human walking, the 
latter would mean more than 1200 W (i.e. 16 W/kg) metabolic power and 
would be very exhausting. These amounts of power consumption are only 
used by humans for running, but not for normal walking (McMahon 1984). 

Compared to other bipedal walking models 

In passive dynamic walkers, only gravitational energy is used for actuation by 
walking down a slope (McGeer 1990). Although often seen as being energy 
efficient, this is only true for low slopes, with correspondingly low speeds. For 
the test biped of McGeer (3.5 kg), stable gait was found at a slope α of 0.025 
rad with (low) corresponding speed of 0.1 m/s. At low slopes, the 
(gravitational) energy expenditure is proportional to the slope and in this 
case equals g sin(α)=0.24 J/(kgm). At higher slopes, and correspondingly 
higher speeds, stable gait is not possible.  
For the simplest walking model – the most simple passive dynamic walker – 
Garcia et al. (1998) have suggested scaling laws relating slope to walking 
speed and energy expenditure. They give a prediction of energy expenditure 
for a 50 kg, 1m-legged person walking at 1 m/s, resulting in Em=1.2 J/(kgm). 
Note though, that this walking speeds calls for a slope at which stable passive 
dynamic walking is not possible! The stability region for the simplest walker is 
given by α<0.015 rad, stated by Garcia et al. (1998) and verified by Schwab 
and Wisse (2001).  
Van der Linde (1999) simulated a bipedal walking model, whose pneumatic 
muscles were activated by reflex-like trigger signals. He found an optimum 
for energy expenditure of Em=0.33 J/(kgm) at a walking speed of 0.47 m/s, 
while maximal stable speed achieved was 0.7 m/s (at which Em=0.55 
J/(kgm)). Note that considerable rotational hip stiffness is present in Van der 
Linde’s model (walking speed is varied by varying this stiffness), whereas in 
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our model the only elastic (i.e. energy storing) parts are in the foot-ground 
contacts in vertical direction.  
 
We conclude that our walker is among the most energy efficient walkers for 
all but the lowest walking speeds (<0.1 m/s). Furthermore, it can achieve 
speeds that are far outside the stable region of the passive dynamic walker, 
and are higher than the speeds found by Van der Linde as well.  

4.2 Robustness 

In this study we perturbed the walker in two ways, and expressed robustness 
as the maximal perturbation the walker can recover from. These 
perturbations were applied on the right side only. The optimums found for 
robustness were asymmetric gaits. The reason why such an asymmetric gait 
is optimal for one-sided perturbations is explained below. 

Robustness against a Swing Leg Pull 

When the swing leg is pulled backwards at midswing, it looses speed. 
Subsequently, it will fail if its foot does not come above ground at the end of 
the swing phase (see Sect. 2.2). The best way to cope with this perturbation 
is to make the angular velocity ωj at midswing as high as possible. As 
illustrated in the previous section, angular velocities above a certain 
threshold value (=ωj at a bifurcation point) are only achieved with 
asymmetric gaits. The branch is chosen where ωr>ωl , as seen for optimum B 
and D, because that branch represents the gait solutions for which the 
perturbed leg has largest angular velocities at the onset of the perturbation. 
 
Forner Cordero et al. (2003); (2005) showed for swing leg perturbations that 
the most challenging perturbations often trigger a lowering strategy in 
humans, meaning that the perturbed leg is put to the ground as quickly as 
possible. Smaller perturbations are met by an elevating strategy, consisting 
of an elevation of the swing leg. Thus, the elevating strategy is a more 
energy efficient, but less robust way of facing perturbations compared to the 
lowering strategy. Our gait model will always face a perturbation by the 
elevating strategy, because of the lack of knees in our model. In the future it 
would be interesting to see if additional knees and corresponding neural 
control could also trigger the lowering strategy, thereby increasing the 
robustness against perturbations even further. 

Robustness against a Change in Ground Level 

When the ground level is suddenly lowered and the right leg is the first leg to 
encounter this change in ground level, the walker must have the left leg in 
place fast enough to take over the stance phase from the right leg. Failure 
occurs when either the left leg is not swinging fast enough, or when the 
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stance phase of the right leg (following the change in ground level) is too 
short. Again an asymmetric gait can be seen as the best way to cope with 
this type of perturbation. In this case it is most favorable to choose the 
opposite branch where ωr<ωl. This asymmetric gait is the best solution for 
two reasons: Firstly, the left leg’s angular velocity in swing phase is much 
higher than that of the right leg; Secondly, the angle between the legs is 
higher than for symmetric gaits (0.6 rad versus 0.4 rad when comparing Figs. 
6e and 6c, respectively). The latter makes sure that stance phase duration 
right after perturbation is still considerable.  
 
However, the results found for RCGL along the pitchfork of Fig. 7 seem to 
disagree with the generality of the mechanical explanation given here. They 
show that the local robustness optimum E’ is a symmetric instead of an 
asymmetric gait. These results are explained by the following two 
observations: Firstly, at higher perturbations on the lower branch, recovery is 
towards the other (upper!) branch, which is not regarded as a valid recovery 
in this study; Secondly, for this type of perturbation the assumption does not 
hold that if the walker can recover from a perturbation size ∆, it can recover 
from all perturbations smaller than ∆! Both phenomena lead to jumps in the 
robustness measure RCGL along the parameter axis, which causes the 
optimization routine to get stuck at local optimum E’. Whether asymmetric 
gait is in general more robust than symmetric gait against this change in 
ground level, remains to be elucidated. The location in parameter space 
probably determines if the perturbed asymmetric gait returns to its own or 
the opposite branch. When recovery to the opposite branch is considered 
valid, the most robust gaits against (one-sided) changes in ground level are 
probably always found to be asymmetric. However, it is outside the scope of 
this study to completely analyze the whole parameter space to verify this. 
 
The maximum step-down from which a walker can recover is sometimes used 
as measure of robustness in gait robots (e.g. Wisse and Van Frankenhuyzen 
2003). However, the results of this study show that the ability to recover 
from a large change in ground level does not guarantee recovery from 
smaller perturbations. Hence, when using this measure to quantify 
robustness, careful consideration must be given to whether the walker can 
recover from all smaller perturbations as well. 
 

4.3 Trade-off between energy efficiency and robustness 

The optimums found in this study suggest that a trade-off exists between 
energy efficiency and robustness. This idea is supported by calculations of the 
energy expenditure, robustness against swing leg pulls and robustness 
against ground level changes for gait cycles along a pitchfork (Fig. 7). For 
symmetric gait a strict trade-off exists for which robustness against both 
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types of perturbations (i.e. RSLP and RCGL) can simultaneously be increased by 
expending more energy. For the asymmetric gaits expending more energy 
results in an increase of one specific type of robustness, while the other 
decreases. 
 
Applying only one-sided perturbations offered some fundamental insight that 
would not have been achieved if perturbations were applied on both sides: 
for a large part of the parameter space, asymmetric gaits are the only stable 
solutions found. Symmetry-breaking bifurcations occur: under the influence 
of changes in (mainly) gp and gd, gait changes from symmetric to asymmetric 
and vice versa. However, in real life perturbations are most likely to occur on 
both left and right legs. Moreover, the results in this study (see Fig. 7) show 
that for symmetric gait increased robustness against swing leg pulls goes 
hand in hand with increased robustness against changes in ground level, 
while for asymmetric gait these are inversely related. The energy efficiency of 
symmetric gait is also found to be higher compared to asymmetric gait. Thus, 
in an unpredictable environment (i.e. real life situations) a compromise 
between robustness and energy efficiency will always result in a symmetric 
gait. This applies to humans as well as bipedal walking robots, as long as the 
dynamics are symmetric over the sagittal plane (i.e. same inertial properties 
of the legs, same leg lengths, same neural controller for each leg, etc.). 
Small asymmetries found in human gait are probably due to small 
asymmetries in the body.  

4.4 Symmetry-breaking bifurcations 

The occurrence of bifurcations in itself is not new to bipedal walking research. 
For passive dynamic walkers, various researchers have identified cascades of 
period-doubling bifurcations as the mechanism of loosing (local) stability, 
termed route to chaos (Garcia et al. 1998; Thuilot et al. 1997). This route to 
chaos is perhaps the most well-known and described in many studies (Nayfeh 
and Balachandran 1995). The symmetry-breaking bifurcations, found in this 
study, would in fact present themselves as period-doubling bifurcations 
instead of pitchfork bifurcations if our Poincaré mapping would map a step – 
and change legs after each step like above-mentioned studies – instead of a 
stride. Thus, the asymmetric gaits found here are qualitatively similar to the 
‘limping’ gaits found in other gait studies. Therefore, the route to chaos might 
also exist for our gait model, although it was not encountered. The CPG 
might prevent or retard this route to chaos. This view is supported by two 
observations. Firstly, stable asymmetric gaits were found in large parts of the 
(coupling gains’) parameter space, without encountering additional period 
doubling bifurcations. Secondly, gait becomes unstable almost immediately 
after leaving this parameter space. 
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The bifurcation diagram (Fig. 7) provides some fundamental insight in the 
relation between local stability and robustness. It shows that the Floquet 
multipliers do not predict robustness. Only for small perturbations, after 
which the gait cycle stays close to the limit cycle, Floquet multipliers are a 
valid measure for gait stability. From observations during this study it 
became clear that the Floquet multipliers predict recovery correctly for 
(Swing Leg Pull) perturbations up to 0.3 J (on a kinetic energy level of 15 J). 
 

4.5 Concluding remarks 

Our approach of changing the coupling gains was successful in finding gaits 
with large differences in energy efficiency and robustness. This great variety 
of gaits is possible by mutual entrainment between the Central Pattern 
Generator (CPG), the musculo-skeletal system (i.e. two actuated legs with a 
large mass on top) and the environment (i.e. ground reaction forces). The 
skeletal part on its own can not walk stably down a slope passive-
dynamically, because our gait model possesses human-like inertial 
properties. The CPG plays a key role in the sense that it not only stabilizes 
the unstable oscillator, comprising the skeletal system and foot-ground 
contact, but also allows for a great variety of different gaits in terms of 
energy efficiency, robustness, velocity, step frequency and stride length.  In 
this study we focused on energy efficiency, robustness and the trade-off 
between them. Our walking model is found to be very energy efficient when 
compared to humans as well as to other bipedal walking machines.  Very 
robust gaits are found as well: the walker can even recover when its swinging 
leg is deprived of 70% of its angular velocity. For the perturbations used in 
this study, a strict trade-off between energy efficiency and robustness exists, 
especially for symmetric gait (see Fig. 7). For both types of perturbations – 
swing leg pulls and changes in ground level – large velocities of the swing leg 
are necessary to cope with large perturbations. This agrees with the 
statement of Wisse et al. (2005) that you will never fall forward if the swing 
leg is put fast enough in front of the stance leg. The asymmetric gait 
solutions found in this study clearly show that the swing leg velocity of the 
perturbed leg needs to be high enough to cope with large swing leg pulls, 
while for large changes in ground levels the swing leg velocity of the 
unperturbed leg needs to be high enough in order to guarantee recovery. An 
important finding for bipedal walking machines similar to our gait model is 
that recovery from a certain change in ground level does not guarantee 
recovery from all smaller changes in ground level, not even in symmetric gait 
(see the three small gray areas in Fig. 8). Thus, if the maximal change in 
ground level is taken as the measure to represent the robustness of a bipedal 
walking machine, one has to make sure that it also recovers from all smaller 
ground level changes. The gait model presented in this study achieves a fairly 
large range of speeds, though not as large as humans, which is probably due 
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to the lack of knees and feet in our gait model. For large speeds the swing 
leg is forcefully swung forward (see Fig. 9b) and actively decelerated at the 
end of the swing phase (see Fig. 10b). This agrees with the suggestion of 
Forner Cordero (2003) that the ability to swiftly swing the leg plays a key 
role in determining the maximum walking speed in humans. 
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Appendix A. Model equations 

The indices j, n and d in this appendix have the following meaning: 

j = {r,l} leg index 

n = {1,2,3,4} generalized coordinate index 

d = {x,y} direction ground reaction force 

 
This appendix treats the (mechanical) equations of motion as well as the 
(neural) oscillator dynamics of the CPG (for the latter, see Eq. A.9). Our 
walker is modeled by a point mass mh representing the HAT (Head-Arms-
Trunk) of the walker, and two rigid legs that each have a mass mj of 12.2 kg 
and a mass moment of inertia Ij around the centers of mass. 
 
The approach of Lagrange is followed in deriving the equations of motion. The 
generalized coordinates vector q is defined as the position of one base-point 
and the two angles of the legs. As a base-point we’ve chosen the location of 
mh: 

h h r l

T
x y θ θ =  q  (A.1) 

 
Expressed in q, the positions of the legs’ centers of mass (mr,ml) are given 
by: 
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The scalar kinetic energy function T(q) is given by: 
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 (A.3) 

 
The scalar gravitational potential energy function Vg(q) is given by: 

g r mr l ml h h( ) ( ) ( )V m gy mgy m gy= + +q q q  (A.4) 

 
Recall that the foot-ground contact forces, consisting of both conservative 

and nonconservative forces, are frx fry flx fly

T
G G G G =  fG  (see Sect. 2.1). 

Gfeet is expressed in foot coordinates and must be transformed to an 
expression in generalized coordinates: 
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in which the positions of the feet fr fr fl fl

T
x y x y=   fx  are given by: 
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The hip damping moments of force are given by: 
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The actuation moments of force of our CPG-controlled hip muscles are given 
by: 
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in which yEj and yFj are the outputs of the two CPG-neurons per leg j 
determined by the following set of differential equations. This model 
incorporates key neural features like the buildup of the neuron’s membrane 
potential – causing the neuron to fire – and a fatigue effect that decreases 
the neuron’s firing rate in time (Matsuoka 1985): 
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With zero sensory input sj, these equations lead to alternating outputs of 
yFj(t) and yEj(t) in the endogenous frequency of the CPG. This oscillation is 
due to the adaptation or fatigue effect in each neuron given by the state 
variables vFj and vEj, respectively, and the reciprocal coupling of the two 
neurons given by wyFj and wyEj, with w the degree of inhibition. The state 
variables directly related to the output of the neurons are given by uFj and 
uEj. The constants τr and τa are the rise time constant and adaptation time 
constant, respectively. To resemble biological neurons, outputs are always 
positive, hence the max-operation (yFj=max(0,uFj); yEj=max(0,uEj)). When sj 
is a periodic signal, oscillation of the CPG will adapt to the frequency of sj. 
The sensory input sj is as given by Eq. 3: 
 

j p j d j( , )s g gθ ω= +q q�  (A.10) 

 
Together these terms lead to Lagrange’s equations of motion: 

n n n
n n n

+
d T T V

dt q q q

 ∂ ∂ ∂
− + = + 

∂ ∂ ∂ 
M D G

�
 (A.11) 

 

Parameters used in the equations of motion 

mh  = 50.6  kg mass of HAT 
mj  = 12.2  kg leg mass 
Ij  = 1.19  kgm2 moments of inertia around centers of mass 
Bhj  = 1.09  Nms/rad joint damping of the hip joints 
lcom  = 0.38  m Length between COM and hip of each leg 
lleg  = 1.0  m leg length 
g  = 9.81  m/s2 gravity constant 
Ky  = 1·105  N/m ground stiffness in y-direction 
By  = 1·104 Ns/m ground damping in y-direction 
Bx  = 1·107 Ns/m ground damping in x-direction 
τr  = 0.12  s rise time constant 
τa  = 0.6  s adaptation time constant 
β  = 2.5  strength adaptation effect 
w  = 2.0  strength of reciprocal inhibition 
u0  = 1.0  tonic input from supra-spinal centers 
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Appendix B. Optimization routine 

The optimization is based on Matlab’s constrained minimization routine 
fmincon, which is a gradient search method. During optimization towards the 
minimum of the object function, fmincon will only vary its optimization 
parameters, in this case the coupling gains. However, for our specific 
problem, the initial state vector should be changed as well. After all, our 
walker has a different limit cycle for each setting of coupling gains. When 
changing the coupling gains without changing the initial state vector, the 
walker has to walk from the old limit cycle to the new one, but will often fail 
to reach it. Therefore, fmincon will only find stable solutions in the 
neighborhood of its starting position, resulting in a very local and often poor 
solution. By using a mediator function between the fmincon function call and 
the function that evaluates the object function, much better results are 
achieved. The mediator function maintains a look-up table for stable 
solutions, which contains the gain settings and corresponding initial state 
vectors.  
 
Hence, one iteration cycle of the optimization routine goes as follows. The 
mediator function receives a new set of coupling gains from fmincon, 
compares it with gain settings already available in the look-up table and picks 
out the initial state vector that is closest by. It then calls the file that 
evaluates the object function (see Fig. B.1) with the coupling gains from 
fmincon and the new initial state vector. When the walker achieves stable 
gait, the value of the object function J(c) is passed to fmincon and the look-
up table is updated with the newly found values. Otherwise, a penalty value 
of 1000 is returned for J(c) (see Sect. 2.2 for possible failure mechanisms).  
 
The evaluation of the object function is shown in Fig. B.1. It starts in the 
upper left corner. It then goes down on the left to calculate the energy 
expenditure for the given walker. It continues with the loop in the right part 
of the flow diagram to calculate its robustness against perturbations. This is 
expressed as the maximal perturbation the walker can recover from. To find 
this maximum, the perturbation applied is increased with stepsize dpert each 
loop. When the maximum is found, the evaluation of the object function is 
complete. 
 
The settings used for the optimization were such that sub-optimal solutions 
could be found throughout the parameter space in a relative short time. The 
fmincon-specific options used are DiffMinChange=0.1 and MaxFunEvals=80. 
This leads to a satisfactory detail in gain settings tried, and greatly improves 
overall calculation times. To make sure all four optimization parameters in 
the coupling gain vector Pcg are in the same order of magnitude, 10gd was 
used during optimization instead of gd. Furthermore, boundaries for all four 
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optimization parameters in Pcg were chosen: for each the lower bound is set 
to 0 and the upper bound to 30. These boundaries keep calculation times 
acceptable. Note that for starting point III (Table 1), keE is already at its 
boundary value. Most other gain settings found in this first phase were much 
lower however. If an optimum found has one or more gains set at its 
boundary value, an optimization is repeated with a higher upper bound.  
 
Optimizations were performed on two PCs: an Intel P4 1.80 GHz with 256 MB 
RAM and an Intel P4 3.0 GHz with 1 GB RAM. Although above-mentioned 
settings allowed for relative short calculation times, the necessary time to 
recalculate the total optimization is estimated to be still around 400 hours for 
the second PC. 
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Fig. 12 Flowchart illustrating the evaluation of the object function J. The energy 
expenditure Ed and the robustness Rτ (RSLP or RCGL) are calculated subsequently and 
result in a value for J (see Eq. 15). 
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1. Discussion 

1.1 Is the paradox solved? 

The goal of the research presented in this thesis was to find the principles of 
neural control that make human walking both efficient and robust. Being 
simultaneously efficient and robust at the level displayed by human walking 
seems contradictory. Research in the fields of biomechanics and robotics has 
provided us with models of bipedal walking that display either great efficiency 
(Collins et al. 2005; Garcia et al. 1998; McGeer 1990) or robustness (Hirai et 
al. 1998; Sakagami et al. 2002). However, a model that incorporates gait 
control that reconciles both qualities to the standard of human walking is 
lacking. The efficient gait control of the models is mostly based on ballistic 
walking (Mochon and McMahon 1980), which compensates for the energy lost 
at heelstrike by a push-off at the end of the stance phase. Efficiency is 
achieved by letting the natural exchange between potential and kinetic 
energy of the pendulum-like legs determine the gait movement: the natural 
dynamics of the walker are exploited. However, the intermittent control 
allows perturbations to accumulate during the swing phase into a large foot 
placement error from which the walker cannot recover. Hence, this type of 
gait control lacks robustness against perturbations. Robust control of bipedal 
gait models is often trajectory-based (e.g. Azevedo et al. 2004; e.g. Hirai et 
al. 1998; Mu and Wu 2003; Park and Chung 2000; Tzafestas et al. 1996). By 
forcing the joints to follow a predefined trajectory, a robust gait is obtained, 
which can look quite natural (e.g. by copying the joint trajectories of normal 
human walking). However, the chances that the predefined trajectory comes 
close to the natural movement of the walker are very small indeed. As 
actuating a system outside its natural movement costs a lot of energy (e.g. 
compare the energy costs of moving a mass-spring-damper system in its 
resonance frequency with moving it far below or above the resonance 
frequency), trajectory-based gait control is generally not efficient. 
Has the research presented in this thesis brought us closer to solving the 
paradox of human walking being both efficient and robust? Our analysis has 
shown at least that in principle the existence of central pattern generators 
(CPGs) in the human spine can contribute to the reconciliation of robustness 
and efficiency in walking. Given the proper types of afferent feedback, the 
CPGs entrain to the musculo-skeletal part of the walker and its environment 
in such a way that it exploits the natural dynamics, leaving the natural 
motion of the walker almost untouched. Just as in ballistic walking, this 
guarantees efficiency.  However, unlike ballistic walking, perturbations cannot 
accumulate to produce large foot placement errors, because the CPGs will 
continuously pull the perturbed system back to the limit cycle of walking. This 
continuous control accounts for the increased robustness against 
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perturbations when compared to the intermittent control in ballistic gait 
models. Although human walking is much more intricate than the CPG-
controlled gait models presented in thesis, our research has shown that CPGs 
and their embedding in the central nervous system could play a key role in 
solving the paradox of human walking being both efficient and robust. 
 

1.2 Limitations 

The models developed in this thesis are deliberately very basic in nature. 
Their goal was to illuminate the influence of low-level spinal control and come 
to an understanding of how it is possible that human walking is both efficient 
and robust. Therefore, these models cannot be used for prediction, but only 
to explain certain behavior on a qualitative level. Control of human stance 
and walking is much more complex than considered in this thesis. Besides 
spinal control, sensory information from vision, the vestibular system and 
mechanorecepors in muscles and skin is integrated in the human brain to 
contribute to a better balance. Furthermore, phasic modulation of spinal 
reflexes during walking (Brooke et al. 1997; Stein and Capaday 1988; Zehr 
and Stein 1999), such as the stumble correction reflex and reflex reversal, is 
not included in our models. Mechanically, our gait models lack knees and 
feet, which makes them much more vulnerable for perturbations. It is 
therefore not surprising that the human resilience against perturbations still 
surpasses that of our gait models. Finally, our models are simulated in a two-
dimensional space, while real-life three-dimensional space brings along 
additional challenges regarding balance, such as lateral stability. 

1.3 Applications 

Given the proper sensory information, the CPG model presented in this thesis 
is a highly adaptive, efficient and robust controller for rhythmic movements, 
including walking. The mathematical compactness of the model (four first 
order low-pass filters per CPG) do not ask for great computing power nor 
memory. In other words, the CPG model is ideal for implementation in real-
time microprocessor applications. Coupling between CPGs and CPGs with 
more than two neurons can give rise to more complex rhythmical patterns 
(Matsuoka 1985; Matsuoka 1987). 
Possible applications fields are rehabilitation, bionics and robotics. In active 
knee-joint prostheses for example, the CPG controller could act as basic 
rhythm generator that entrains to the walker to provide the actuation signals 
on the right time. Reflex-like local feedback could be added to increase the 
robustness (see Ch. 4). The gait could be adapted to the user’s intention by 
supplying sensory information of the healthy leg to the CPG. If the user 
makes larger or fasters steps with his healthy leg, the CPG will adapt to this 
information and faster or larger steps of the actuated leg – and thus a faster 
gait – will be obtained. Another way for the user to influence the gait quality 
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could be by providing the controller with EMG information of the muscles 
above the knee prostheses. The EMG information could be used as 
feedforward signal for the controller, or the user could change the knee joint 
stiffness by giving certain pulses of muscle activity. In the latter case the CPG 
will adapt to the changed knee joint stiffness; higher joint stiffness will result 
in a faster swing. The CPG could also entrain to the gait of people with a hip-
knee-ankle-foot orthosis, acting as timing device for functional electrical 
stimulation. In bipedal walking robots, CPGs could act as basic gait 
controllers, providing efficient and robust control (see Ch. 5 and 6). Another 
example where these controllers could be used is in industrial robots that 
have to perform repetitive rhythmical tasks.  
It is noted that in most applications, the CPGs alone are not sufficient. In 
applications regarding gait, CPGs provide robustness against perturbations in 
the sagital plane. However, walking in three-dimensional space adds two 
degrees of freedom – yaw and roll – that cannot be easily stabilized by CPGs. 
In bipedal robots, yaw and roll can be stabilized mechanically (Wisse et al. 
2001). An alternative that could also be applied for active prostheses and 
orthoses is to add a kind of equilibrium controller for keeping balance in the 
frontal plane. The CPG would then effectively see a two-dimensional walker 
that can be controlled efficiently and robustly, as shown in this thesis. For 
active prostheses and orthoses safety is of the utmost importance and has to 
be guaranteed. Knee buckling, for example, has to be prevented. Moreover, 
functions like switching from posture to gait and back have to be added and 
possibly feedback to the user is wanted.  
In summary, the CPGs’ ability to adapt to the dynamics of the total system 
including environment will allow it to be used as a basic rhythm generator or 
timing device in a larger system controller, thereby playing a key role in the 
efficient and robust control of rhythmic movements such as walking. 
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2. Conclusions and future directions 

2.1 Conclusions 

To get towards an understanding of efficient and robust control of bipedal 
walking, as displayed by human beings, a bottom-up approach gave rise to 
three research questions. The research reported in this thesis is an effort to 
find answers to these questions. The findings are stated below.  
 

• What is the influence of different components of reflexive feedback on 
postural stability and associated dynamical behavior? 

 
 
To obtain a stable posture the total stiffness of the joints should be 
positive. Gravity causes a negative stiffness in joints that need to 
uphold a body part with a center of mass above the joint position. 
Examples of this are the ankle joints in a standing person (Ch. 2) and 
the elbow joint in an upright forearm (Ch. 4). The negative 
gravitational stiffness needs to be compensated by the muscles in 
order to remain standing. Co-contraction is the most straightforward 
way to increase joint stiffness, but consumes a lot of energy. 
Reflexive feedback of muscle lengthening is a much more efficient 
way to increase joint stiffness, but time delays – and in lesser part 
activation dynamics and visco-elastic tendon dynamics – add 
considerable phase lag to the reflex loop, endangering the stability of 
posture. Reflexive feedback of muscle velocity adds phase lead and is 
necessary to compensate for time delays in the reflex loop (Ch. 2). 
The two ways in which reflexive feedback can become unstable are 
associated with bifurcations. Zero joint stiffness is associated with the 
fold bifurcation, while postural instability by a combination of high 
reflex gains and phase lag is associated with a Hopf bifurcation. 
Beyond the latter stable periodic movement emerges that 
corresponds to a neural deficiency, termed clonus. Branches of fold 
and Hopf bifurcations divide the parameter space of reflex gains in 
areas of stable and unstable posture. Within the area of stable 
posture, dynamical properties such as damping, stiffness and 
resonance frequency depend on the reflex gains (Ch. 2). These 
dynamical properties are also important for rhythmic movement. For 
example, to achieve efficiency in arm swinging (Ch. 4), people 
‘choose’ their reflex gains in such a way that low joint damping is 
obtained. 
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• Can the co-existence of CPGs and reflexes explain observed efficient and 

robust rhythmic limb movement? 
 

CPGs are able to entrain to the limb dynamics in such a way that 
efficient and robust rhythmic limb movement is obtained. The 
efficiency is achieved by resonance tuning: the CPG tunes into the 
resonance frequency of the limb. Chapter 3 explains which types of 
afferent input are necessary and sufficient for the CPG to obtain this 
resonance tuning behavior. Feedback of positional information 
provides resonance tuning above the endogenous frequency of the 
CPG. Integral feedback provides resonance tuning at and below the 
endogenous frequency. Analogous to the local reflex loop, feedback 
of velocity information is necessary to compensate for the time delay 
in the loop that couples the CPG to the limb muscles. The non-linear 
properties of the CPG make it very robust against changes in limb 
parameters. Chapter 3 shows that this non-linearity results in a 
dependence of the gain of the CPG’s transfer functions on input 
amplitude and that the CPG is therefore able to entrain to a broad 
range of different limb dynamics. Chapter 4 presents a model of the 
forearm in which the CPG loop co-exists with the local reflex loop. 
The CPG entrains to the limb dynamics, which are shaped by the local 
reflex loop. Efficiency is also achieved by resonance tuning in this 
highly non-linear neuro-musculo-skeletal model, just like observed in 
human arm swinging. Force perturbations on the forearm in upright 
position show that both reflex loop and CPG take part in 
counteracting environmental perturbations. 
 

 
• Can both efficiency and robustness be achieved in CPG-controlled 

walking or is there a trade-off between these gait qualities? 
 

In chapter 5 it is shown that a neural oscillator – consisting of one 
locally coupled CPG per hip joint – achieves efficiency comparable to 
passive dynamic walking. Efficiency is obtained by positional, 
derivative and integral feedback, similar to the models of rhythmic 
limb movement in chapter 3 and 4. This way, the CPGs hardly affect 
the natural limit cycle of passive dynamic walking, but add 
robustness against perturbations (this was observed during 
simulations for chapter 5, though not shown here; robustness is 
treated in chapter 6) and controllability of gait velocity (see Ch. 5). 
The adaptability of the CPGs to changing dynamic properties of the 
walker’s mechanical oscillator (i.e. the passive walker) is shown by 
adding hip stiffness: resonance tuning enables the CPGs to entrain to 
the gait’s new natural limit cycle, which has shorter stride length and 
period. Although in human walking the gait velocity is not changed by 
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a change in hip joint stiffness, reflexes (e.g. the hamstring and 
quadriceps reflexes) could be modulated to change the dynamical 
properties of the musculo-skeletal part to which the CPGs are 
coupled. The CPGs will adapt to this and a new gait cycle is obtained, 
for example with increased velocity. Chapter 6 shows that CPGs are 
able to stabilize gait models that are inherently unstable due to 
human mass distribution (i.e. it is unable to walk passively down a 
slope, as displayed by passive dynamic walkers). Although stable gait 
cycles that are both efficient and robust are obtained for many 
combinations of afferent and efferent coupling gains, a clear trade-off 
is visible between efficiency and robustness against perturbations, 
especially for normal symmetrical gait. 

2.2 Future directions 

The goal of the research presented in this thesis was to find the principles of 
neural control that make human walking both efficient and robust. The 
outcome of the performed modeling and simulations suggest that CPGs could 
play a key role in achieving such robust and efficient gait. However, the 
research of this thesis is qualitative in nature. To progress towards models 
can be evaluated quantitatively, I would recommend adding complexity in a 
bottom-up way, extending the gait model step by step. The first step would 
be to add knees and feet. Without knees, it is impossible to overcome large 
obstacles and feet add robustness (McGeer 1990; Wisse and Van 
Frankenhuyzen 2003).  Muscle dynamics, cutaneous (i.e. related to the skin) 
and load (i.e. related to force) reflex mechanisms, and reflex modulation – 
such as the stumble correction reflex and reflex reversal – should be 
incorporated next. Ultimately, a three-dimensional gait model including 
supraspinal control and integration of all sensory information would be 
desirable, but this would require a lot more physiological data than is 
currently available. More physiological information of the embedding of CPGs 
and reflexes in the CNS, supraspinal gait control and sensory integration is 
necessary to develop valid gait models. At present, modeling and 
experimental physiology are more or less separate disciplines, while they 
need each other to progress. More collaboration between these fields is 
necessary to extent our knowledge of human walking in the future. 
 
With respect to active orthoses and lower-limb prostheses, it has to be 
investigated how the CPG models can be incorporated in a controller that is 
safe and can be utilized – besides gait – in posture and more complex tasks 
such as initiating and stopping gait, turning corners and stair climbing. 
Another point of investigation is the sensory information that has to be 
supplied to the CPGs to obtain the best adaptive gait behavior. Besides local 
coupling to the actuated joint, sensory information of the healthy leg is 
probably necessary to obtain a more robust and adaptive gait pattern. 
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Another idea is to entrain a CPG model to the healthy leg as well and couple 
it to the CPG model of the affected leg. 
 
Not many bipedal gait robots have been built that use CPGs to generate 
locomotion. In most of them, the CPGs are used as trajectory generators  
with merely phase resetting of the CPG oscillators to ensure entrainment 
between the CPGs and the robot’s mechanics (e.g. Morimoto et al. 2006; 
Righetti and Ijspeert 2006). This approach still ‘forces’ the robot to entrain to 
a desired trajectory and is not likely to exploit the natural dynamics of the 
robot. Only a few bipedal gait robots use sensory feedback to obtain stable 
walking by entrainment between the CPGs and the robot’s mechanics (Endo 
et al. 2004; Tenore et al. 2007). However, as far as I know, none were 
developed with the right sensory feedback to provide not only robust and 
adaptive, but also energy efficient gait. A promising new line of research 
could be the incorporation of CPG and reflex-like control in gait robots based 
on ballistic walking. The CPG controller would entrain to the efficient 
mechanics of the gait robot to provide efficient walking that is also highly 
controllable and robust against perturbations. 
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Summary 

Walking is a very important function of the human movement apparatus. The 
question how walking is controlled by the central nervous system is yet to be 
answered. A number of reasons lead us to believe that neural oscillators in 
the spinal cord, termed Central Pattern Generators (CPGs), have a major 
contribution to human gait control. Firstly, CPGs play a key role in locomotion 
of many animals by providing the basic rhythm for muscular activity and by 
interacting with the reflex system. Secondly, normal walking does not require 
attention: it goes automatically. Finally, a growing number of observations 
indicate the presence of CPGs in the human spine. A convincing example of 
the latter is the fact that anencephalic babies – having a brain stem but no 
cerebellum or cerebrum – are able to ‘walk’ on a treadmill and display 
coordinated stepping movements when their feet touch the ground.  
 
At present, no bipedal gait model combines efficiency and robustness up to 
the level of human walking. The main motivation for the research in this 
thesis is to obtain fundamental knowledge of the principles that account for 
this reconciliation of efficiency and robustness in human walking. Other 
motivations come from the fields of rehabilitation and bipedal gait robots. 
 
The goal of the conducted research is to find the basic principles of neural 
control that make human walking both efficient and robust. To achieve this 
goal, a bottom-up approach was chosen that started with analyzing the 
behavior and stability of posture under reflexive control and concluded with 
an efficient and robust spinal control of bipedal gait. This led to the following 
research questions that needed answering for the goal to be reached: 
 

• What is the influence of different components of reflexive feedback on 
postural stability and associated dynamical behavior? 

 
• Can the co-existence of CPGs and reflexes explain observed efficient and 

robust rhythmic limb movement? 
 

• Can both efficiency and robustness be achieved in CPG-controlled 
walking or is there a trade-off between these gait qualities? 
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The first research question is addressed in chapter 2. The influence of 
reflexive feedback gains and delays on the behavior and stability in postural 
tasks is examined using a musculo-skeletal model of human stance. 
Bifurcation analysis is used to ascertain the boundaries of postural stability in 
terms of reflex parameters. A bifurcation represents a change to a qualitative 
different behavior of the system under parameter change. Linearization of 
the model links the bifurcations to bio-mechanical concepts. 
We started off by investigating the influence of the stretch reflex, which is 
modeled by feedback of muscle lengthening and velocity with a typical delay 
of 50 ms. Branches of fold and Hopf bifurcations are calculated in a 
parameter space constructed by the positional and velocity feedback gains 
and divide the parameter space into regions of unstable posture, stable 
posture and stable limit cycles. The fold bifurcation represents zero ankle 
joint stiffness and is associated with the minimal positional feedback gain 
required for stable posture. Both increased co-contraction and positive force 
feedback lower the necessary minimal positional feedback gain, as they both 
increase the joint stiffness. The Hopf bifurcation represents an unstable reflex 
loop; beyond it stable limit cycles emerge that lead to oscillatory movement, 
which is associated with the pathology termed clonus. To prevent oscillatory 
movement a certain minimal velocity feedback gain is necessary to 
compensate for the phase lag caused by muscle activation dynamics, the 
presence of compliant tendons, and most of all the time delay in the reflex 
arcs. The latter has a profound effect on postural stability as increasing time 
delay shrinks the Hopf branch – and by that the region of stable posture – 
considerably. Oscillatory movement also occurs if the combined reflexive 
feedback – composed of muscle lengthening, velocity and positive force – is 
too large for a given co-contraction level. Higher co-contraction levels allow a 
higher combined reflexive feedback. Within the region of stable posture, the 
combination of co-contraction, reflex gains and delay determine dynamic 
characteristics such as natural frequency and relative damping. Areas of 
reflex gains used by healthy subjects in quiet and perturbed stance were 
estimated by fitting the model to the dynamic characteristics shown in data 
from literature. The overlap of these areas could indicate that stretch reflexes 
are important not only in perturbed, but also in quiet stance.  
 
The second research question is answered in chapters 3 and 4. Both chapters 
discuss CPG-controlled single limb movement. In chapter 3 the limb including 
reflexes is represented by a general mass-spring-damper model, while in 
chapter 4 a neuro-musculo-skeletal model of the forearm is introduced.  
Recent studies indicate the use of CPGs in human rhythmic limb movement. 
Firstly, reflex modulation experienced during arm and leg cycling is similar to 
that in animals with CPG-controlled rhythmic limb movement. Secondly, brain 
control is less and simpler for rhythmic arm movements compared to discrete 
movements: a major part of the control comes from spinal level. Other 
studies show that rhythmic arm movement is achieved by ‘resonance tuning’, 
that is, by actuating the arm in its resonance frequency automatically. The 
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preferred frequency in which people like to swing their arms matches the 
arm’s resonance frequency, while the latter is changed to match a desired 
movement frequency by adjusting the limb’s joint stiffness. This ‘resonance 
tuning’ behavior ensures maximal efficiency, as moving a system in its 
resonance frequency requires a minimal amount of energy. 
In chapter 3 is investigated if the ‘resonance tuning’ behavior could be 
reproduced by a model of a limb coupled to a CPG. The limb’s resonance 
frequency is varied between 1 to 20 rad/s by changing the joint stiffness. The 
type of afferent feedback to the CPG proves crucial for its resonance tuning 
capability. According to literature, at least afferent feedback from Ia and II 
fibers to the CPG’s flexor and extensor centers is present. This is modelled by 
positional and velocity feedback of the limb’s angle. Integral feedback is also 
investigated. The influence of the different types of afferent feedback is 
analyzed by DFA (i.e. describing function analysis) and checked by numerical 
simulations (i.e. bifurcation analysis and continuation of periodic solutions). 
Feedback of positional information provides resonance tuning above the 
endogenous frequency of the CPG (i.e. eigenfrequency of the CPG). Integral 
feedback provides resonance tuning at and below the endogenous frequency. 
Feedback of velocity information is necessary to compensate for the time 
delay in the loop, coupling limb to CPG; without it bi-stability occurs and 
resonance tuning is not possible at high movement frequencies. DFA showes 
that robustness against changes in limb parameters originates from the 
CPG’s non-linear characteristics: the large spread in the CPG’s gain plots – 
associated with different angular movement amplitudes – ensures 
entrainment between limb and CPG for a wide range of limb parameters. The 
PID-type afferent feedback shapes the phase coupling between CPG and limb 
to ensure that this entrainment leads to periodic movement in the limb’s 
resonance frequency. This CPG model is the first to provide resonance tuning 
at natural limb frequencies above and below its endogenous frequency. 
In chapter 4, besides the CPG’s resonance tuning capability, the CPG’s 
contribution in counteracting perturbations is investigated for a more realistic 
limb model. In a highly non-linear neuro-musculo-skeletal model of the 
forearm, for which the CPG is organized in parallel with the stretch reflexes, 
the limb’s resonance frequency is varied by changing the reflex gain 
associated with feedback of muscle lengthening. To maintain a realistic 
damping ratio of the limb, the reflexive velocity feedback gain is adjusted 
accordingly. Integral feedback is thought of as an internal process of the 
CPG. The results show the CPG’s ability to tune into a broad range of 
resonant frequencies of the forearm in hanging and inverse position. 
Increased co-contraction allows for higher maximum movement frequency, 
which is in agreement with studies of rhythmic forearm movements. The 
efficiency was shown by the very low muscle activation necessary to sustain 
steady-state periodic movement (even in inverse position only a few 
percent). The robustness of the CPG control was tested by applying force 
perturbations to the forearm in the most challenging, inverse position. The 
CPG delivers an increasing part of the necessary counteracting muscle 
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activation (up to 41%) for increasing perturbation size. The other part mainly 
originates from the local reflex loop. As far as we know, the proposed neuro-
musculo-skeletal model is the first to explain the observed resonance tuning 
in human rhythmic arm movement. 
 
The third research question is treated in chapters 5 and 6. In chapter 5 the 
efficiency of CPG-controlled walking is evaluated and in chapter 6 the trade-
off between robustness and efficiency is investigated. 
Like human walking, passive dynamic walking – i.e., walking down a slope 
with no actuation except gravity – is energy efficient by exploiting the natural 
dynamics of the limbs that act as inverse (stance leg) and hanging (swing 
leg) pendulums. In chapter 5 the efficiency of level-ground CPG-controlled 
walking is compared with passive dynamic walking. Each leg of the passive 
walker is locally coupled to its own CPG that controls the hip moment of 
force. The CPG achieves to control gait efficiently by tuning into the 
resonance frequency of the passive dynamics of the walker. Positional, 
integral and derivative (PID) afferent feedback of the limb angle play the 
same crucial role as in rhythmic single limb movement (chapters 4 and 5): 
resonance tuning above the CPG’s endogenous frequency, resonance tuning 
at and below the endogenous frequency and compensation for time delay, 
respectively. The resonance tuning behavior of the CPG model allows the gait 
velocity to be controlled within a large range by a single parameter, while 
retaining the energy efficiency of passive dynamic walking.  
In chapter 6 the limits regarding energy efficiency and robustness against 
perturbations are explored for a bipedal walking model with human-like mass 
distribution. A CPG is tightly coupled to each leg through sensory afferents 
and motor efferents. A great variety of different gaits in terms of energy 
efficiency, robustness, velocity, stride frequency and stride length are found 
by optimizing the afferent and efferent gains to different cost functions 
regarding energy efficiency and robustness. For the latter, our walker is 
subjected to two types of perturbations: its swing leg is pulled backwards 
during midswing and it encounters sudden ground level changes. The CPG-
controlled walking model is found to be energy efficient compared to humans 
as well as to other bipedal walking machines. Robust gaits are found as well: 
the walker can even recover when its swinging leg is deprived of 70% of its 
angular velocity during midswing. Symmetry-breaking bifurcations, i.e. 
pitchfork bifurcations, are present throughout parameter space and represent 
transitions from symmetric to asymmetric gait. A strict trade-off between 
efficiency and robustness exists and is most evident symmetric walking. 
 
In conclusion, we showed that CPGs could play a key role in reconciling 
energy efficiency and robustness in human rhythmic movement, such as arm 
swinging and walking. Reflexes shape the limb dynamics to which the CPGs 
entrain, while both reflexes and CPGs contribute in the recovery from 
perturbations. In the future, the CPG model can be used as part of a gait 
controller in applications such as walking robots or powered walking orthoses. 



 

Samenvatting 

Lopen is een belangrijke functie van het menselijk bewegingsapparaat. De 
vraag hoe lopen geregeld wordt door het centrale zenuwstelsel is nog 
onbeantwoord. Er zijn belangrijke aanwijzingen dat oscillatoren in de 
wervelkolom, genaamd Centrale Patroon Generatoren (CPGs), een grote 
bijdrage leveren aan de menselijke loopregeling. Ten eerste spelen CPGs een 
sleutelrol bij de voortbeweging van veel dieren door de verzorging van het 
basisritme van spieractiviteit en door interactie met het reflex systeem. Ten 
tweede is lopen geen bewuste beweging: het gaat automatisch. Ten slotte 
wijzen een groeiend aantal waarnemingen op het bestaan van CPGs in de 
menselijke wervelkolom. Een overtuigend voorbeeld hiervan is dat 
anencephalische baby’s – met een hersenstam, maar zonder grote en kleine 
hersenen – gecoördineerde stappen maken wanneer hun voeten de grond 
raken en kunnen ‘lopen’ op een loopband. 
 
Tot op heden is er geen model van tweebenig lopen dat zich kan meten aan 
menselijk lopen qua energetische efficiëntie en stabiliteit. De belangrijkste 
motivatie voor dit onderzoek is het begrijpen hoe efficiëntie en robuustheid in 
menselijk lopen samengaan. Andere motivaties komen uit het veld van 
rehabilitatie en tweebenige looprobots. 
 
Het doel van het onderzoek is het vinden van de basis principes qua neurale 
regelingen, die menselijk lopen zowel efficiënt als robuust maken. Om dit 
doel te bereiken is voor een bottum-up aanpak gekozen. De eerste stap 
bestaat uit het analyseren van de invloed van reflexen op het gedrag en de 
stabiliteit van houdingstaken. De laatse stap moest een efficiënte en robuuste 
spinale regeling voor tweebenig lopen opleveren. Deze aanpak resulteerde in 
de volgende onderzoeksvragen die beantwoord moesten worden om het doel 
te bereiken: 
 

• Wat is de invloed van verschillende componenten van reflexieve 
terugkoppeling op de stabiliteit en bijbehorend gedrag in houdingstaken? 

  
• Kan de co-existentie van CPGs en reflexen de waargenomen efficiëntie 

en robuustheid in ritmische arm- en beenbewegingen verklaren? 
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• Kan zowel efficiëntie als robuustheid worden bereikt in CPG-geregeld 
lopen of is er een afweging tussen beide kwaliteiten? 

 
De eerste onderzoeksvraag wordt uitgewerkt en beantwoord in hoofdstuk 2. 
De invloed van reflexieve terugkoppelfactoren en tijdsvertragingen op het 
gedrag en de stabiliteit in houdingstaken is onderzocht met behulp van een 
musculo-skeletair model van staan. Bifurcatie analyse is gebruikt om de 
grenzen van stabiliteit te bepalen in termen van reflex parameters. Een 
bifurcatie representeert een verandering naar een kwalitatief ander gedrag 
door parameterverandering. Linearisatie van het model koppelt de bifurcaties 
aan bio-mechanische concepten. 
Het onderzoek is begonnen met de bepaling van de invloed van de 
monosynaptische reflex, die gemodelleerd is als terugkoppeling van de 
spierverlenging en spiersnelheid met een typische tijdvertraging van 50 ms. 
Curven van fold en Hopf bifurcaties zijn berekend in een parameterruimte 
opgespannen door de positie- en snelheidsterugkoppelfactoren. Deze curven 
verdelen de parameterruimte in gebieden van instabiliteit, stabiel staan en 
limiet cycli. De fold bifurcatie representeert het punt waarvoor er geen 
stijfheid in het enkelgewricht aanwezig is. Het is geassocieerd met de 
minimale positieterugkoppeling, die nodig is om stabiel te staan. Zowel 
verhoogde co-contractie als positieve krachtterugkoppeling verlagen de 
benodigde minimale positieterugkoppeling, omdat ze beiden leiden tot een 
verhoogde enkelstijfheid. De Hopf bifurcatie representeert een instabiele 
reflexboog. Na een Hopf bifurcatie ontstaat een stabiele limiet cyclus, die 
leidt tot periodieke beweging welke gerelateerd is aan het ziektebeeld clonus. 
Om dit te voorkomen is een bepaalde minimale snelheidsterugkoppeling 
nodig om de faseachterstand – veroorzaakt door spieractivatie dynamica, 
compliante pezen, maar vooral door de tijdvertraging in de reflexbogen – te 
compenseren. De tijdvertraging heeft een grote invloed op de stabiliteit van 
houdingstaken, aangezien de Hopf curve – en dus het gebied van stabiel 
staan – snel kleiner wordt voor grotere tijdvertraging. Voor een gegeven 
hoeveelheid co-contractie leidt een te grote totale reflexieve terugkoppeling, 
bestaande uit terugkoppeling van spierverlenging, snelheid en positieve 
kracht, ook tot periodieke beweging. Hogere co-contracties laten een hogere 
reflexieve terugkoppeling toe. Voor stabiel staan bepaalt de combinatie van 
co-contractie, reflexieve terugkoppelfactoren en tijdvertraging de dynamische 
eigenschappen zoals natuurlijke frequentie en relatieve demping. De 
dynamische eigenschappen tijdens normaal en geperturbeerd staan, afgeleid 
van data uit de literatuur, zijn als input gebruikt om de bijbehorende 
gebieden van reflexieve terugkoppelfactoren, die mensen normaal gebruiken, 
te schatten. Het feit dat deze twee gebieden overlappen, zou kunnen 
betekenen dat reflexen niet alleen in geperturbeerd staan, maar ook in 
normaal staan van groot belang zijn. 
 
De tweede onderzoeksvraag wordt beantwoord in hoofdstukken 3 and 4. 
Beide hoofdstukken gaan over CPG-geregelde ritmische bewegingen van 
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armen en benen. In hoofdstuk 3 wordt een algemeen massa-veer-demper 
systeem als model voor een ledemaat met reflexen gebruikt, terwijl in 
hoofdstuk 4 een meer realistisch neuro-musculo-skeletair model van de 
onderarm wordt geïntroduceerd. 
Uit recente studies komen aanwijzingen naar voren, die duiden op het 
gebruik van CPGs voor ritmische arm- en beenbewegingen in mensen. Ten 
eerste blijkt dat de reflex modulatie tijdens ritmische arm- en 
beenbewegingen in de mens gelijksoortig is aan die van dieren, waarvoor het 
gebruik van CPGs is aangetoond. Ten tweede is sturing vanuit het brein voor 
ritmische arm- en beenbewegingen veel minder en simpeler in vergelijking 
met discrete bewegingen: een groot deel van de sturing vindt dus plaats op 
spinaal niveau. Andere studies laten zien dat voor ritmische armbewegingen 
‘resonance tuning’ wordt gebruikt. Resonance tuning wil zeggen dat een 
systeem automatisch in zijn resonantiefrequentie wordt aangestuurd. 
Wanneer aan mensen wordt gevraagd om met hun arm te zwaaien, dan doen 
ze dat in de resonantiefrequentie van de arm. Wanneer echter wordt 
gevraagd om de arm met een bepaalde voorgeschreven frequentie te 
zwaaien, dan wordt de resonantiefrequentie van de arm aan deze 
voorgeschreven frequentie aangepast door de gewrichtsstijfheid te 
veranderen. Dit ‘resonance tuning’ gedrag zorgt voor een maximale 
efficiëntie, aangezien het bewegen van een systeem in zijn 
resonantiefrequentie het minst energie kost. 
 
In hoofdstuk 3 is onderzocht of het ‘resonance tuning’ gedrag zou kunnen 
worden gereproduceerd door een model van een ledemaat, die gekoppeld is 
aan een CPG. De resonantiefrequentie van de ledemaat is hierbij gevarieerd 
tussen 1 tot en met 20 rad/s door verandering van de gewrichtsstijfheid. Het 
type afferente terugkoppeling naar de CPG blijkt van cruciaal belang om het 
resonance tuning gedrag te bewerkstelligen. Volgens de literatuur is er 
mimimaal sprake van afferente terugkoppeling van de spieren naar de flexie 
en extensie centra van de CPG via Ia en II vezels. Deze is gemodelleerd door 
positie -en snelheidsterugkoppeling van de ledemaat’s hoek. Integrale 
terugkoppeling is ook onderzocht. De invloed van deze PID-achtige afferente 
terugkoppelingen is geanalyseerd door DFA (i.e. describing function analysis) 
en gecontroleerd door numerieke simulaties (i.e. bifurcatie analyse en 
continuering van periodieke oplossingen). Terugkoppeling van positionele 
informatie geeft resonance tuning voor frequenties, die boven de endogene 
frequentie van de CPG (i.e. eigenfrequentie van de CPG) liggen. Integrale 
terugkoppeling geeft resonance tuning rondom en beneden de endogene 
frequentie. Snelheidsterugkoppeilng is nodig om de tijdsvertraging in de 
terugkoppellus tussen ledemaat en CPG te compenseren; anders ontstaat bi-
stabiliteit en is resonance tuning niet mogelijk voor hoge 
bewegingsfrequenties. DFA laat ook zien dat de robuustheid tegen 
veranderende ledemaat parameters voortkomt uit de niet-lineariteit van de 
CPG: de grote spreiding in de CPG’s modulus grafieken – geassocieerd met 
verschillende zwaai amplitudes – zorgt ervoor dat entrainment tussen 
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ledemaat en CPG plaats vindt voor een groot bereik van ledemaat 
parameters, zoals massa en stijfheid. Het PID-type afferente terugkoppeling 
bepaalt de fasekoppeling tussen CPG en ledemaat zodanig dat deze 
entrainment leidt tot periodieke beweging in de resonantiefrequentie van de 
ledemaat. Dit CPG model is de eerste, die zowel boven als onder de CPG’s 
endogene frequentie resonance tuning laat zien. 
In hoofdstuk 4 wordt, naast het resonance tuning vermogen van de CPG, ook 
de bijdrage van de CPG aan het tegengaan van perturbaties onderzocht. 
Hiervoor is een meer realistisch, hoogst niet-lineair, neuro-musculo-skeletair 
model van de onderarm gebruikt, waarbij de CPG en lokale reflexen parallel 
georganiseerd zijn. De resonantie frequentie van de onderarm is gevarieerd 
door de reflexieve terugkoppelfactor van spierverlenging te veranderen. De 
reflexieve snelheidsterugkoppelingsfactor is daarbij zodanig aangepast dat de 
arm een realistische relatieve demping behield.  Integrale terugkoppeling 
wordt gezien als intern proces van de CPG. De resultaten laten zien dat de 
CPG de onderarm aanstuurt in zijn resonantie frequentie voor een groot 
bereik van resonantiefrequenties in zowel hangende als staande positie. 
Hogere co-contractie laat hogere maximum bewegingsfrequenties toe, wat in 
overeenstemming is met studies naar ritmische onderarm bewegingen. De 
efficiëntie is getoond aan de hand van de zeer lage spieractivatie, die nodig is 
om voortgaande periodieke beweging te bewerkstelligen (zelfs in staande 
positie slechts een paar procent). De robuustheid van de CPG regeling is 
getest door middel van kracht perturbaties op de onderarm in de meest 
uitdagende, staande positie. De CPG levert hierbij een toenemend aandeel 
van de spieractivatie (tot 41%) –  nodig om de perturbaties tegen te gaan –  
bij toenemende perturbatie grootte. De rest van de spieractivatie komt 
grotendeels van de lokale reflexen. Voor zover wij weten, is dit voorgestelde 
neuro-musculo-skeletaire model het eerste, dat het resonance tuning gedrag 
in ritmische armbewegingen van mensen kan verklaren. 
  
De derde onderzoeksvraag wordt behandeld in hoofdstukken 5 en 6. In 
hoofdstuk 5 wordt de energetische efficiëntie van CPG-geregeld lopen 
geëvalueerd en in hoofdstuk 6 wordt de afweging tussen robuustheid en 
efficiëntie onderzocht. 
Passief dynamisch lopen – dat wil zeggen, over een kleine hoek naar beneden 
lopen zonder enige actuatie behalve de gravitatie – is net als menselijk lopen  
efficiënt door het uitbuiten van de natuurlijke dynamica van de benen, die 
dienst doen als staande (standfase) en hangende (zwaaifase) pendulums. In 
hoofdstuk 5 wordt de efficiëntie van CPG-geregeld lopen op vlakke vloer 
vergeleken met passief dynamisch lopen. Elk been van de passieve loper is 
hierbij lokaal gekoppeld aan zijn eigen CPG welke het heupmoment bepaald. 
De CPG bereikt energie efficiënt lopen door de passieve loper in de resonantie 
frequentie aan te sturen. Afferente terugkoppeling van heuphoek, 
hoeksnelheid en de geïntegreerde hoek (dat wil zeggen, PID terugkoppeling 
van de heuphoek) spelen dezelfde cruciale rol als in ritmisch armzwaaien 
(hoofdstukken 3 and 4). Terugkoppeling van de heuphoek geeft resonance 
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tuning boven de CPG’s endogene frequentie, terwijl terugkoppeling van de 
hoek’s integraal resonance tuning rondom en onder de endogene frequentie 
geeft. Terugkoppeling van de hoeksnelheid compenseert voor 
tijdvertragingen. Het resonance tuning gedrag van het CPG model zorgt 
ervoor dat de loopsnelheid binnen een groot bereik gecontroleerd kan worden 
met een enkele parameter, terwijl de  efficiëntie van passief dynamisch lopen 
behouden blijft. 
In hoofdstuk 6 worden de grenzen qua efficiëntie and robuustheid tegen 
perturbaties verkend voor een tweebenig loopmodel met menselijke 
massaverdeling. Aan elk heup is een CPG gekoppeld via sensorische 
afferenten and motorische efferenten. Veel verschillende looppatronen wat 
betreft energieverbruik, robuustheid, snelheid, stapfrequentie en stapgrootte 
zijn gevonden door middel van optimalisatie van de grootte der afferente en 
efferente koppelingen naar verschillende kostfuncties in termen van energie 
efficiëntie en robuustheid. Wat robuustheid betreft, onderging onze loper 
twee typen perturbaties: er werd aan zijn zwaaibeen getrokken gedurende 
het midden van de zwaaifase en hij onderging plotselinge veranderingen in 
de hoogte van de grond. Het CPG-geregelde loopmodel is energiezuinig 
bevonden vergeleken met zowel mensen als andere tweebenige 
loopmechanismen. Robuuste looppatronen zijn ook gevonden: het loopmodel 
kan zijn balans zelfs herstellen, nadat het zwaaibeen 70% van zijn 
hoeksnelheid was afgenomen. Symmetriebrekende bifurcaties – dat wil 
zeggen, pitchfork bifurcaties – zijn veelvuldig aanwezig in de 
parameterruimte and geven de overgang van symmetrisch naar 
asymmetrisch lopen weer. Een strikte afweging tussen efficiëntie and 
robuustheid bestaat wel degelijk en is het meest duidelijk aanwezig in 
symmetrisch lopen. 
 
In deze studie hebben we laten zien dat CPGs een sleutelrol kunnen spelen in 
het samengaan van efficiëntie and robuustheid voor ritmische bewegingen 
van de mens, zoals armzwaaien en lopen. Reflexen veranderen de dynamica 
van armen en benen, naar welke de CPGs entrainen. Na perturbaties  
participeren zowel de reflexen als de CPGs in het herstel van de ritmische 
beweging. In de toekomst kan het CPG model gebruikt worden als onderdeel 
van een loopregeling in applicaties zoals looprobots en geactueerde orthesen. 
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af en toe toch toebedeelde, al was het maar uit pure noodzaak (heerlijk lange 
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om vroeg. Speciaal voor jou heb ik zo lang gewacht met promoveren, dat je 
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Gils bedanken voor zijn wiskundige assistentie gedurende de beginperiode 
van mijn project. Al zaten we niet altijd in dezelfde toestandsruimte tijdens 
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zat), we hebben wel samen een mooi eerste artikel geschreven. 
Vervolgens wil ik mijn kamergenoten op chronologische volgorde bedanken. 
De eerste twee jaar zat ik op de kamer met Hendrik-Jan Boven. Al waren 
veel van onze discussies over muziek, whiskey, wetenschap en vage ideeën 
omtrent energie-extractie uit zwarte gaten niet altijd goed voor de voortgang 
van mijn onderzoek, ze waren het wel voor mijn humeur! De laatste jaren 
heb ik op de kamer doorgebracht met Miguel Aznar Alonso en Martijn Klein 
Horsman. Aan mijn Spaanse vriend zijn glazige ogen kon ik altijd goed 
aflezen dat mijn tekst nog een tikkeltje onbegrijpelijk was. Martijn – die pas 
geleden en dus voor mij gepromoveerd is (shame on me) – fungeerde ook 
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als klankbord, maar dan vooral op het gebied van muziek en wereldbeeld. 
Verder wil ook alle collega’s en (oud)studenten van de vakgroep Biomedische 
Werktuigbouwkunde, alsmede enkele van de BSS groep, bedanken voor de 
goede sfeer en medewerking. Vele gezellige koffiepauzes, vakgroepuitjes, 
café bezoekjes en niet te vergeten het squashen en zaalvoetbal, droegen bij 
aan een plezierige werkomgeving de afgelopen jaren. Van de vakgroep wil ik 
nog even Herman van der Kooij en Anton Sanders apart noemen. Met 
Herman heb ik veel discussies gehad over de controle van balans in staan en 
lopen. Ook al waren we het lang niet altijd eens, de werklust waarmee hij 
zich op een onderwerp kan storten moet bewonderd worden. Met Anton heb 
ik het vaak gehad over toepassingen van mijn CPG model in de revalidatie. Ik 
heb veel waardering voor zijn praktische en pragmatische blik op dit gebied 
en hoop dat er in de toekomst nog wat gedaan wordt met onze ideeën. Van 
de vier studenten die ik begeleid heb tijdens hun afstuderen waren Hendrik-
Jan Boven en Koen Mulder al bezig toen ik begon. Door de uitgebreide 
literatuur studies die zij al hadden gedaan kreeg ik een ‘head start’. Daarna 
heb ik slechts twee studenten kunnen vinden die zo gek waren om op dit 
gebied, of met mij als begeleider, af te studeren, namelijk Sita Drost en 
Arnout van den Broeke. Arnout wil ik speciaal bedanken voor de hoeveelheid 
tijd en werklust, die hij in zijn afstudeerwerk heeft gestoken. Dit heeft hem 
het mede-auteurschap van een boekartikel (hoofdstuk 6) opgeleverd.  
Verder wil ik ook mensen bedanken, die geen directe wetenschappelijke 
bijdrage aan het proefschrift hebben geleverd, maar wel hebben gezorgd 
voor de nodige afleiding en ondersteuning. Allereerst wil ik Jos Aarninkhof en 
Dennis van Heijningen van Nefit B.V. bedanken voor de mogelijkheid mijn 
uren flexibel in te zetten wanneer dat nodig was. 
Belangrijker dan het promoveren zelf zijn natuurlijk vrienden en familie. 
Matthias van Ardenne wil ik bedanken voor zijn onuitputtelijke motivatie, al 
werd deze meestal al hijgend op de fiets via een mobiele telefoon mijn kant 
op gestraald. Arno de Jong wil ik bedanken voor de vele avonden ‘supper 
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zodat ik me weer onoverwinnelijk voel als ik huiswaarts keer ;-) Matthias en 
Arno, bedankt dat jullie mijn paranimf willen zijn! Verder heeft het spelen in 
een band voor jaren plezierige afleiding gezorgd. De muziekstijl is gegroeid 
van simpele pop en rock naar uitdagende jazz en funk, wat mij veel 
voldoening geeft. Daarvoor wil ik de bandleden, Erik-Jan de Hoon, Pieter 
Lerou, Joost van Ingen, Marjolein Hilgerink en oud-bandgenoot alsmede oud-
huisgenoot Alex Hendriks bedanken. Ook het biertje na de repetitie met 
bijbehorend geouwehoer is erg relaxed. Pa en ma, jullie zijn letterlijk het 
begin van mij. Voor dat en jullie eeuwige zorg en toewijding, bedankt! Mijn 
zus Nadja wil ik bedanken voor het feit dat ze altijd zichzelf is, en dat je kunt 
komen en gaan wanneer je wilt. En last but not least, wil ik mijn vriendin Gea 
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